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SUMMARY

A numerical difference scheme is described to simulate three-
dimensional, time-dependent, turbulent flows of incompressible
fluids at high Reynolds numbers in a platle channel and in con-

centric annular channels.

Starting from the results of Deardorff, the Navier-Stokes
equations, averaged over grid volumes, are integrated. For_a[
description of the subgrid scale motion & novel model has been
developed which takes into account strongly inhomogeneous
turbulence and grid volumes of unequal side lengths. The pre-
mlses used in the model are described and discussed.

Stability criteria are established for this method and for
similar difference schemes. For computation of the pressure
field the appropriate Poisson's equation is solved accurately,
except for rounding errors, by Fast Fourier Transform.

The procedure implemented in the TURBIT-1 program is used to
simulate turbulent flows in a plate channel and annulus with radius
ratio of 5:1.] For both types of flow different cases are realized
with a maximum number of grid volumes of 65536, Already for
rather small grid volume numbers the numerical results are in
good agreement wlth experimental values. Especially the velocity
profile and the mean velocity fluctuations are computed with

111 |



significantly better accuracy than in earlier, direct simulations.

The energy — length-scale model and the pressure-velocity
gradient correlations are used as examples to show thah the method
may be used successfully to evaluate the parameters of turbulence
models.

Earlier results are reviewed and proposals for future research

are made.
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LISTING OF OFTEN-USED SYMBOLS3

1) General Characterization of an Arbitrary Variable y

~y NWJV?IVq

J1d1d 4

29,
Ox

6;3\

Average over time or over ensemble

Average value over a space limited volume

Deviation from average value

Average value over total flow volume

Average value over the planes with periodie
boundary conditions (x -xa;x-.{;);\
"Period average value™ ’

Deviation from period average value
Average value over a mesh volume

Average value over a mesh area with normal
parallel to the Xy coordinate ("i-surface™)

Average value over the x-, ¥-lor r-surface
of a mesh

Arithmetic average value over adjacent
values in the x4 direction in the grid
(same weight)

Same as yﬁ‘for the x-,¢-, r<direction

—~l e ~y -1
Same as ¢,9:97F 1  with unequal weights
for considering non-equidistant meshes
according to {(6-1)

Partial derivative of y with respect to x

Central difference quotient of y:

Y OxrBX ) g (x-45) |
ax |




J}yt Difference quotient according to (6-2)

cﬁfa\ Difference quotient according to (6-20)
Yo ! (As a rule) component in x; direction /168
(i=1,2,3)
3Xfyy;;{‘ Components 1n the x-, -, r direction
.Z; Vector
ég; Matrix

Average value

mexl Maximum value

Y min’ Minimum value

dw , Wall value

gﬂ {(for velocities:) Velocity value at new

time step when pressure is lgnored.

A . .
y | Dimensioned variable

Jo‘ Reference quantity

2) Summation Convention

Sums from one to three are taken over pairs of unknown

subseripts on the lower right:

. 5 2 _ & .2
Jee T ion dee J dei T ?._.:,; Ji|

The same indices take on corresponding values when located

at another position (upper left or upper right).
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No sums are taken over indices on the lower right, if they

are in square brackets

3)  Symbols

q-ﬁql:"'t qé’ ]
Awl
cﬁc“...’cﬁ;cv«

ddldat"'ld:J

D4,D2,.., Ds‘[
DIMDIN,.. DSV
DA,... , DA%
e.!

e,

E
Vi

E(R)

E (k)

|

3
dciyce ¥ Z dee

(=

Turbulence model constants (Chapter 2)
Constants in (2-8)

Fine structure model constants (Chapter 5)
(A2 - 32)

Wall distance

v, ; ,
éL*'FéEQJDeformation veloeclty
BXJ ak" |

Time average of the difference form of the
square of the deformation veloecity (according
to 4-23 to 26)

Undetermined form of sz

Fortran program according to Appendix 2
Fortran program according to Appendix 2
Fortran program according to Appendix 2
Unit vector in Xy direction

Kinetlc¢c energy

Kinetic energy of the fluctuation motion
within the mesh

Three—-dimensional, average, scalar energy
spectrum (Appendix 1)

One-dimensional energy spectrum (Appendix 1)
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E-M' [&4)

EQ? (ka)

|
E-Z:EZI En['

£ Ey
‘f‘fff-l; {3i

Tensorial energy spectrum {(Appendix 1) 170

Ell_(kl 'gy) l
l
Boolky ey )|

Bl vey)
Function according to Chapfter A2.2

Constants for considering the wall roughnesses
in (7-8), E, for the wall at R1,E2 for r=R2.

Factors according to (4-38-40)

Area
Jj-area; mesh area, whose normal is parallel
to the XJ coordinate

Longitudinal correlation (Al-5)

(4-27)

Fortran program accerding to Appendix 2
Transverse correlation (A1-6)
Amplification matrix (A6-15)

Average mesh edge length (5-6)

Relative mesh edge lengths hirAxi/h

Mesh edge lengths

Subscript (often with respect to the X4
direction

Imaginary unist /171

Number of meshes 1n the x. direction

1

Subsecript (often with respect to x, direction)

2

Number of meshes in the x., direction

2
Subscript (often with respect to X3 direction)
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Re
m

RA |
R2

Secalar wave number

Scalar wave number with respect to x

direction 1

Wave number vector
Karman constant (0.4)
Rotta constant (A1-148)

Weighting function (4-13)
Number of meshes in x3 direction

Subscript with respect to Xq direction

Turbulence ball diameter
Correlation length (2-5,6,7)

Diameter of the region with local isotropy
(Chapter 4.1)

Subscript wilth respect to X5 direction

Subseript with respect to x, direction
or for characterizing the time step

Variocus time steps of the differencing
procedure; see Chapter 6.2.1.

Number of time steps over which averaging
is carried out according to Chapter 6.2.1.

Pressure

Average axial pressure gradient

Radius coordinate
Reynolds number (1-13)

Reynolds number (1-14)

Radius of i1nner cylinder

Radlus of outer cylinder
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1=

U, Uy,

v}!oylvg«

Ik

I
x-‘; xz ,X;

XX

Uy

2

Residual term

Two-point correlation (A1-1) between
veloecity fluctuations

Two-point correlation between arbifrary
variables

Coordinate

Time
Axial velocity component (Figure 1)

Velocity vector

See Figure 1

See Pigure 1

Azimuthal velocity component (Figure 1)

A volume

Radial velocity component (Figure 1) /173
Position vector

Position vector (Figure 1)

Axial coordinate (Figure 1)

Period length for plate in the X, OT X,
direction, respectively.

Period length in x direction for annulus

Azimuthal coordinate (Figure 1)



y An undetermined guantity

Z Radial coordinate (Figure 1)

o | Kolmogorov constant (U4-14)

J,_i Kronecker-Delta

‘J\

A Interval

r Gamma function

€ Dissipation (1-16)

n Kolmogorov length (A1-33)

¢ Dirac function

A Figenvalue

u Turbulent velocity of fine structure

lu Locally isotropic part of fine structure-
viscosity

!

/u! Inhomogeneous part of fine structure-|
viscosity

Val = ut+v

v Kinematic molecular viscosity
Fi Displacement vector
g | Density /174
%,7,% | Correction factors (5-14,15, 5-82)
T { Integration variable
¢ Volume correlation (4-20)
a Period length in azimuthal direction for
annulus
X Auxiliary potential {(Chapter 6.2.2)
Xy 5%y Undetermined turbulent fields (Chapter 4.2)
W Rotational velccity, rotation
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A PROCEDURE FOR THE DIRECT NUMERICAL SIMULATION OF

TURBULENT FLOWS IN PLATE AND ANNULAR CHANNELS AND|

ITS APPLICATION IN THE DEVELOPMENT OF TURBULENCE
MODELS*#*

Ulriech Schumann ¥%*

1. INTRODUCTION

1.1. Turbulence

Turbulent flow fields [53, 89, 115, 120] are characterized
by their irregular structure. The velocity at a position
fluctuates greatly and in an irregular way. Turbulence is a
flow state which usually comes about when the ratio of the
inertia forces and the viscosity forces inside of the fluild
characterized by a Reynolds number exceeds a critical value.
Below this critical Reynolds number there 1s a laminar flow field.
For large Reynolds numbers, the flow is unstable, i.e. two flow
states which differ by an arbitrarily small amount diverge 1n
time so much that after some time they no longer have as much in
common as two arbitrarily selected flow states. This instability
is the reason for the existence of turbulent flows. Because of

the large velocity fluctuations, the exchange of momentum and

#* Accepted dissertation presented to the Mechanical Engineer
Faculty of the Univ. of Karlsruhe (TH)

#% Nuclear Research Center, Karlsruhe, Report KFK 1853, Institute
for Reactor Development, Nuclear Research Association mbH.

#¥%¥%¥ Numbers in the margin indicate pagination of original
foreign text.



scalar variables such as enthallpy and mixing components is
greatly intensified over the mclecular exchange which takes place
in laminar flows. The guantitative description of turbulent
flows 1s therefore important for many regions. In practice,
usually one must depend on experiments, This is especially true
for complicated geometries, such as for example the flow around
local blocking units in reactor fuel elements [75] as well as in
channel flows, for example [88].

The results of such experiments were first approximated
by simple formulas, with which it was possible to perform
interpolation within the measurement range. The Blasius law [120]
for the representation of the dependence of tube friction
coefficient on Reynolds number is a typical example of this.
By considering the basic equations, at the present time turbulence
models are being established with which it is possible to carry
extrapolations fo ranges for which no measurements are yet avail-
able. Chapter 2 reports on such turbulence models. It becomes
clear that these models must be supported by expensive experi-

mental work. /2

An o0ld dream of flow research scientists is to theoretically
solve the Navier-Stokes equation, which is assumed %o be wvalid
for the description of turbulent flows (see Chapter 1.3). At the
present time, this is not possible under general conditions,
especially because of the great deal of effort required to
describe the nonsteady flow fields. Even for "one-dimensional"
geometries (for example tube), these are always three-dimensional
functions of location. As the capacity of electronic computers
is enlarged, we believe that this problem will be brought closer
to a solution. For example, it was Deardorff [29] who simulated
the turbulent flow between two plates. In the presént paper we
continue this work. This further development is in the following

areas.



- Improvement of the theoretical fundamentals
— Simulation of flows in plate channels as well as in
an annulus channel
- Application of methods for determining turbulence model

constants.

In addition to flows in closed channels (for exampleJin a
reactor fuel element), the numerical description of turbulent
flows is also of interest in meteorology [6B]. Much basic work
has been performed in this connection. The application of
numerical methods for simulating turbulent flows within the frame-
work of reactor technology will be important in the description of
local meteorological processes in the vieinity of nuclear power
plants [129].

1.2. Geometry, Boundary Conditions, Material Constants, /3

Reference Variables

In this paper we will consider channel flows, which are
problems usually considered in reactor technology. Because of
thelr simplicity, we conslder the annulﬁs channel and the plate
channel in order to reduce the numerical effort and because there
exist. experimental results for comparison. According to
Figure 1, the annulus considered is "infinite" in the axial
direction and is determined by the separation of the walls, §
as well as the ratio ﬁéﬁﬁ}of the radii of the outer and inner
walls. The plate channel which is extended to "infinity" in two
directions is found by the limiting transition

Ro/RA 1
These geometries can be described using relatively simple

Cartesian coordinates



or cylindrical coordinates

E = {’?‘,% :;(3 }Zyl. = [;"?':’}EYL{

where
-

.13:-\*-09.5‘5?}» F=F.sonp \
More complicated geometries are described 1in Chapfer 11.2.
The flow under consideration is assumed to be a steady (turbulent)
flow in the x: direction in the statistical sense¥, which is
produced by forced convection because of a specifled pressure
gradient
- . _ ; A |
K 5547 (1=1)
or a corresponding axial field force per unit of volume.

The average veloclty is not a dependent variable, but depends
|

i
will not use the average or maximum velocity but instead the

on ?x instead. As a reference variable GO\ for the velocity, we

veloclity which can be derived from the pressure gradient

. 85
%o ]/;1 (-2

t

Equilibrium of forces results in the following average value of
the shear stress{ Twpat the walls:

-~

5D \ (1-3)

Fal
T =
(T 7
and therefore we also have

-

A {TW)
YU =TT (1-4)

# i.e. average values < > faken over time or the ensemble.



This velocity is called the "shear stress velocity" [120, P. 542]./4

The following dimensioned reference variables are

Symbol Meaning Dimension (i.e.)
i \ ‘ Distance between walls m |
- XA
1, = 'D/’M, : Characteristic time s |
- A A . k.g
, = D § Pressure - \
ms 1
A s . k
s, Speecific density| —%w
‘ n? |
A s . . 2
v, | Characteristic kinematic m
molecular viscosity 5

The fluid is assumed to be incompressible and the den31ty §€

is independent. of location and time. The average viscosity 1s
assumed to be _%L; the vizscosity ylcan be a function of position

and time. We will impose the wall adhesion condition

-

y!wan =0 (1-5)

as a boundary condition. In addition, the flow field in the axial

direction is assumed to be constant in the statistical sense.

1.3. Basiec Eiguations

The basic equations are the conservation equations for mass
and momentum. Using the reference varlables defined in Chapter 1.2,
we have the following equations [53] which go back to Navier [86]
and Stokes [1171]:



Assumptions:

- Incompressible fluid

- Constant densities

- Newtonian fluid {(i.e. linear, isotropic) material law for

the shear stress as a function of the deformation rates,

no moment stresses
- Fluid can be described as a continuum
A
— DNo field forces except the average pressure gradient Px

— ‘Euler frame of reference

Cartesian coordinates:

!
&
Mass conservation (continuity equation): 9‘Q=:a ) | (1-6)

- Momentum conservation

M ..a_ uS)Y = — o 9 au{ Bu-
r I iid 17 v .

Cylindrical coordinates:

- Mass conservation (continuity equation)

2V o Uy 4 0 - n
ox * Fap * war(Tv)=0 (-9

- Momentum conservation

g:x * 5 9 (VYL = 3.’, ("v“")*-r af(“w*q')' .+£ ! (1-9)
(B 32) i ) 28t )
!

LY, Uy U
ot _("* "’)*“9‘(“'1 + 3 5(Torve)s S

T I w i

# The summation convention holds. Terms with repeated subscrlptsf

[not in| brackets] are summed from 1 to 3. |
&



3 B ity S <bt e ]

2
(7]

o

[ (1-9)

{._ L‘}f':rja(* 22) (Cont'd)

1/?'1 ’ 1’1',

*l
rl

Hofz B3 m 2 Jvfzri-i"ié’w ]

3.
o7 7
pirg

e

Here we have defined:

R RN WU CR S W V2 Y
z - {x"lx’-ix:’}lmrt '-‘{X,V'T}#r(.: _)?/ﬁ
o = (B/8)/ ( FolS)
t = ? /'?o
po= (B8)/(§%)=2
v 4
.V = EEB'E y

The terms have the following meaning:

IT

III
Iv

Local acceleration

"Convection terms", difference between momentum flowing

into and out of a differential volume element.

Pressure fluctuation gradient /6
"Diffusion terms", the momentum supplied per unit of

volume by molecular transport (negative, therefore

momentum sink)



v : Px = 2, average pressure gradient in the x direction or
force per unit of volume (position and usually time-

dependent) (momentum-source)

|
The terms 5?9\ and -iﬁﬁl in the convection terms of the

t@ﬂand.tﬁ%components are called the Coriolis or centrifugal

accelerations.

Sometimes other notations are used for the convectlion or
diffusion terms, which are sometimes more advantageous. We will

only give them for Cartesian coordinates:

'53?'(“&“.)')=1{jg%?% (because of 1-6) (1-10)

The left form ls called the conservative form, because its

integral over the entire volume is zero (see Chapter A5.4).|

ax["(a,xJ a%))= 14 .@3_"%; -dﬁx- (397?" e’ ‘ (1-11)
J /o 9%1 v [ Bw
vag (5% - /7 Smiag tawd | e

(In the second equation, the first term only contains mixed

derivatives. This can be used to formulate simplified boundary

conditions.)

One should consider that ghcorresponds to a Reynolds number Re

Re = U, D/ ’ ‘ (1-13)

which, however,|is not an independent variable (see Chapter 1.2.).
The Reynolds numbers Re of Re formulated with the average

- max
velocity %a>. , and the maximum velocity (ﬁ} l, respectively,
max



are found as

Vo2 AT
L v /
Remar =g Re - i

In the following we will refer to Rem when we speak of Reynolds
numbers.

1.4, Derived Blasic Elquations

FPurther equations can be derived from the momentum and mass
conservation equations and the wall adhesion conditlon by
carryling out purely mathematical operations. In this paper,
we will require such equations for the kinetic energy per unit
of mass)Es{%{ and the pressure per unit of mass p.

By forming the slcalar product of a velocity vector and
its partial time derivative, whereby the latter is specified by
the momentum conservatlion equation, we find a conservation

equation for the kinetic energy of a fluld:

Cartesian: E= g: 1.(‘.’*

9E |, . 2F _ _ 20wpl D(V JE acu%?)) 5(1 15)
It ook T x| % O xy

where

av,(ax‘,‘ 9%’),__ v & (& a""“) (1-16)

£= V 55 5%, F i

is the dissipation, i.e. the energy converted into heat per unit
of time and unit of volume by the work of the viscosify forces.
The equation 1tself does not contain any new physical informa-

tion, but the dissipation can be identified from the first theorem

of thermodynamics [7, 53, 120].

S



by the momentum conservatlon equation (1-7,9)
the continuity equation g 31{

The corresponding eguation in cylindrical coordinates is
given as follows where Esi‘i(u;“«:-u;w,‘);ﬂ

oL af”kE) +-——f° E)f--4,Ff*ugE).. V- B

a8t
5._;_{ v (2 E +2 (o) + a(“’”?)*——("’””-r) :(
(1-17)
BV (B R o3 + 130 |
+,-;-'§}[v(fr-§—f 2 (v, )+-;;,(1’4“r’)+,,3r(1‘ ") }"‘E
The dissipation e is glven by:
(e Bl

*(33; r)x) (ao.~ )/drr ?'O;’)H

Because of (1-5), we have the following wall condition

E/Wall =0

—_—— — —— e e e o e e m— o o — e —

If we form the divergence of the acceleration vector given

» then because of
we have the following:

aah X
In cartesian coordinates:
P _
> = ?w (1-19)
_ ot 39 Ju; 3%)}
-QKW‘L - ax‘a)s( ¢ ") aX 3 (ax + 5:‘:' ! (1—-20)

10



or in cylindrical coordinates

2ip - 4 ! 4 9 ar ) _ '
R P S R B

where qul is the expression corresponding to q&art.for which we
will not glve the details.

From (1-5) and (1-7) we find the following wall condition:

FE ,a__(u (au, atg))IWanl (1-22)

This is an elliptlcal, partial differential equation of
the Poisson equation type with a Neumann (inhomogeneous) boundary
condition which must be satisfied at all times. This egquation
characterizes the importance of the incompressibllity condition
and of the pressure, because it causes a disturbance in the
velocity field to propagate in the flow space with "infinite

speed of sound".

1.5, Principles of Numerical Simulation of Turbulent Flows

1.5.1. Direct and Model Simulation
There are two prineclpally different directions in the

numerical simulation of turbulent flows.

One method used in this paper) consists of the direct
integration of the basic equations according to Chapter 1.3,
Models are only used for certain deficiencies associated with
the solution, which are called fine structure models or correction
models. The limited solution i1s always caused by the limited
computer capacity, as will be discussed in the following.

The direct simulation methods are characterized by the fact

11



that the fine structure models contained in them and the other
errors go to zero when the resolution is increased 1n very
powerful computers. Three-dimensional, nonsteady flow flelds /9
are always simulated. In the second method, first the exact
basic equations are approximated by model equations, and thelr
model character does not disappear when the resolution is
increased arbitrarily. Usually these are model equatlons for
deseribing time averages or ensemble averages of flow flelds
[12]. 1In Chapter 2| we will discuss the principles and problems

of such models.

In the following we will give a summary of the numerical
method of direct simulation. Since true turbulent flow fields
have only been calculated by Deardorff [29, 30, 31, 33], this

summary will also include methods of simulating laminar flows.

1.5.2._ Methods of Numerical Simulation

The natural method of directly using the basic equations
given in Chapter 1.3 and then making them discrete and trans-
forming them into a difference method suitable for computer
simulation 1s neither the only method nor the first used method,
In addition to this type of simulation of the so-called "primitive
variables", the velocity components u; and the pressure p, first
a rotation potential form was used. Recently, the basic
equations were expanded into eigen functions, using the Galerkin
method. A summary of the various methods 1s given in [58, 43,
447, In the simulation of the primitive variables, a problem
arises in the consideration of the incompressibility condition
and therefore a problem assocliated with the pressure. TFor the
first time Harlow-Welch [54] carried out this method (only for
laminar flows in two dimensions). Starting with initial
conditions, which satisfy the continuity equation, the pressure

is determined at any time using a difference formulation of

12



Ehuations_(l—l9, 21) in such a way that the time derivative of

the velocity components satisfies the continuity equation. The same
method was used by Williams [149] and Deardorff [29] in three
dimensions. In this case, a correction according to Hirt-Harlow
[56] was introduced so that small deviations of the initial values
from the incompressibility condition do not gradually increase.

The simplification of this process was suggested by Chorin [21],

and for example Amsden-Harlow [3]. The pressure was not /10
calculated direectly, but instead an equivalent auxiliary potential

) the magnitude of which was determined in such a way that the
incompressibility condition is malntained for arbitrary initial
conditions. This method will also be used 1n this paper and will

be explained in Chapter 6.2.2. Other papers in which the primitive
variables were integrated are, for example, [27, 42, 62, 63, 94].

The problems with the pressure do not occur in the rotation
potential form of the basic equations. For this purpose, the

rotation UQI is formed for the basic equations

_ oY; .
Wwe 7 é“d.k ‘-a-;: N (=423 (1-23)
where Ecjk = 0 in case two subscripts are the same

1 in case the subscripts are cyclical

-1 in case the subscripts are anticyclical

The pressure drops off because of

*p_ - (1-24)
Ceyk 'c‘a';xfr*:\"o!

The velocities are calculated from a viector potential ¥

L

e £ red 1-2
’U‘ = et—JK m J "_4(2)3) ( 5)

so that Jw /Ix; =0 1‘

13



From (1-23) and (1-25) we find the following equations for

determining the vector potential
w, = _%’;‘L_’é s oisA23 (1-26)
A

Instead of a Poisson equation for the pressure, it is
necessary to solve three Poisson eguations in three dimensions
at every time step. In addition, the solutions wE and w, are not
so simple to interpret as are Us» P3 this has an effect on the
formulation of boundary conditions. This method used by Aziz-Hellums
[2] and Schonaguer [121]1 for laminar flows is not being recommended
in recent papers [44]. This is not true for two-dimensional flows.
Here only one compornent of rotation is different from zero and
therefore only one Polsson equation must be solved. This method
has proven itself many times [40, 41, 44, 49, 78, 831, but a three-
dimensional representation is required for the simulation of turbu-
lent flows. (See for example Chapter A1.2.2 as well as [81, 831).

Over the last three years, the Galerkin method was developed
further, especially by Orszag [94, 95, 96, 97]. The velocity
field u(x,t) with respect to position x 1is expanded 1nto eigen
functions, for example:

wix s 5 v (&) exp (7 Ax) (1-27)

where only a finite number of discrete wave number vector
elements k are numerically considered. The advantages of the /11
method are the following [967:

a) The derivatives of the veloeity field can be determined

without any truncation error.

b) For the same storage capacity, 8 (two in each direction)
fimes a&s many wave number components can be simulated in three dimen-|
sions as can be done using a difference method. This is because
14



in a spatlially discrete mesh network contalning KM meshes, only

a maximum of %? wave numbers can be represented in one directiocn.
¢) The afliasing problem (see Chapter A5.3) can be avoided.

Advantage a) 1s not very important [33],(see Chapter A5.2.1.)
The disadvantages of the method are the following:

a) Nonlinear terms, such as for example the convection
terms or nonlinear viscosities can only be calculated in real
space. For this, the fields wv{(k,t) must be transformed into the
real field u(x,t), whereupon the nonlinear terms are calculated
and then a retransformation is carried out. This transformation
costs a lot of computer time, and only the fash Fourier transfor-
mation, FFT [19,20] limits this time to within acceptable limits.

b) The eigen function development is only possible for
simple geometries (plate, sphere, cylinder) [94,97]. However,
complicated geometries can be mapped into manageable and simpler

geometries using suitable conformal mappings.

¢} The methods and the corresponding programs are more
complex. Thils method 1s not to be recommended in spife of 1ts
elegance [44, 957.

Finally, we should mention the finite element method
(F.E.M.), which was applied to flow problems,by Crastan-Devos [21]
for example. Crastan showed that even if a variational principle
does not exist, which has not yet been found for the general
Navier-Stokes equation, it is possible to apply the (F.E.M.).

The advantage of the (F.E.M.) 1s in the simplifiled description
of complicated geometries and boundary conditions. However, this

method leads to large systems of equatlons which are very nonlinesgr
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for turbulent flow. The finite element method has only proven

itself for linear flow problems. Zlg

In this paper we will therefore use the method of simulating
the "primitive variables" mentioned first.

1.5.3. The Method of Deardorff

Deardorff [28, 29] simulated the nonsteady, three-dimensional
and turbulent flow between two parallel plates. He considérs
a section of the plate flow having a length of Xgé 3| in the flow
direction, with X»=0.7in the azﬁmuth direction {(perpendicular to
the flow direction, parallel to the plates), as well as the
complete plate cross section in the radial direction {(perpendicular
to the plates) with D = 1. The flow volume is divided into
equidistant measures having the edge lengths

Axz3/2%= 0.425  dy= F[44= 0.05, pz= (20 = a.a:; (1-28)
that is,/into 24+14.20 = 6720 meshes.

The fine structure of turbulence (see Chapter 5.1) 1s con-
slidered by means of models, such as developed by Lilly [80, 81,
32]. The agreement of the average results with the measurements
of Laufer [76, 77] 1s average. TFor example, the average
veloelty profile deviates by up to 50% from the measured values.
The agreement with the measurements of Comte-Bellot [18] at
higher Reynolds numbers is slightly better. These errors can
partially be traced to the small numbers of meshes, as well as
to errors in the fine structure model and the boundary condltions,
as we will show in this paper. Deardorff's fine| structure model,
strictly speaking, is suited for meshes having equal sidelength,
in contrast to (1-28). It is now possible to transfer the

fine structure model to eylindrical coordinates.

16



The evaluation of the results resulted in information on
the structure of a flow. For example, it was possible to
determine that the "turbulence balls" have different dimensions
depending on the velocity component in the axial direction.
In the papers [27, 30, 33] the temperature fileld considered|
as a positive quantity was also integrated, and the stability
of the atmosphere flow was investigated with suitable boundary
conditions. The mesh network consisted of a maximum of 40¥40¥20
meshes in this case. No evaluations were carried out for testing

or improving the turbulence models, as we will do in this paper.

The most important result of Deardorff's work 1s the proof
that the direct numerical simulation of turbulent flows is possible
at high Reynolds numbers and that a fine structure model can be

used which is independent of specific experimental support.

1.6. Resolution Capacity and Requirement for Fine Structure
| Models : /13|

Up to a few years ago, it was doubted that it would be
possible to carry out a direct numerical simulation of turbulent
flows [23, 35, 121]. The requlrements for a complete numerical

simulaticon are found as follows:

Emmons [35] estimates that about 1010 meshes will be re-
quired for describing the fine structure of a turbulent tube
flow at a Reynolds number of about 5,000. The computation
time using modern computers is estimated at 100 years. The
order of magnltude of the lengths which must still be resclved

17



is derived from the wall roughness magnitude, which brings about
a change in the pressure loss amounting to 10% compared with
that for a smooth wall. In addition, the amount of effort

increases wilith inereasing Reynolds number,.

A similar estimation can be made as follows: & direct and
complete simulation must at least include the laminar sublayer.
A measure of the mesh edge length required for this is therefore az
the thickness of the laminar sublayer. In general, the following
formula is used [120, P. 553]

S (1-29)

Using the definition of QJ and the reslstance coefficient A

2 (3p/%)) B
A= (1-30
’ FIRS 30)
we find
A A4 a0 Y2 YR (1-31)
and thereforé
_s- Vg l (1-32)

AZ =

If the Blasius resistance law [120, P. 553] is substituted
for A for tubes at Reynolds numbers which are not too high

A = 0.3164 Rem“l/ul (1-33)
then we find
J
~#/¢
HZ 25 Re } (1-34)

and therefore, for example, for Re = 105, according to Figure 2

AZ = 10772
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Consequently, KM # 103 meshes would be required in the radial

direction or 109 meshes 1n the three dimensions.

If a special "wall law" model 1s applied for the wall layer,
it would be interesting to determine the resolution Az which
would be required in the turbulent core flow. A measure for the
required length is the Kolmogorov length n, as will be discussed
in Chapter Al.2. For locally isotropic turbulence, we use the
turbulence ball diameter to characterize the flow for which the
inertia force and the visgcosity forece make an egual contribution
to the disintegration of the ball:

7o (9/B)”

(1-35)

If the energy conservation Eguation (1-15) is averaged over

the entire flow volume, we find

’ _ v..n - .u. -
%YES = 5%,_3 (-<Of/07)) = <&

(1-36)

Because of ¢ a,f;/ajr)-;i 23"&0‘/5! we then find

_ A Y _
az = %L=(m@,.3_) (1-37)
and with (1-33)
)t

1-38
A2 = 1.7 Rem (3-38)

For Re = 102 we would also have the following according to

Figure 2

AZ x 10'5I

Therefore we obtain the same results, which 1s interesting.

19

/14



We would expect that such a large number of meshes could not
be handled on a modern computer. The following section will show
this.

1.6.2. Posgible Resolution and Final Conclusion

If KM is the number of meshes in one direction, then the

3

required core storage increases according to KM- for isotropic
resolution. If we consider the fact that about nine variable
values (3 veloeity components, and one energy and divergence|

value each at 3 different times, that is 15, and only nine at

any time 1f suitable programming 1s used) must be stored, then

we find that U bytes are required per sbtorage location and per
value, according to Figure 3. The core storage avallable on

the IBM 370/165 in Karlsruhe to the users is 2000 X byte (1K=1024)
at the present time. This means that problems with XM & 40 /15
can be calculated with core storage as a maximum. If sultable
dynamic data management 1s used, so that at any time only one
value is in core storage per mesh point and the rest 1s on
background storage units, then it is possible to process problems

with up to KM &~ 80.

However, the computation time restriction is even greater.
In order to simulate a three-dimensional unit of time, a compu-
tation time is required which increases in proportion to KMu
because the permissible time step is proportional to KM~L (see
Chapter 6.3.2). For a mesh network of 16x16x16 meshes, and for
a time step of Atxﬂ}loajion the IBM 370/165, the approximate
calculation time is 3 seconds. This means that the computation
time per dimensionless time unit is about 10 minutes. This means
we have the computation time dependence on KM as shown in Figure b,
In order to obtain a statistiecally stéady solution 2-3 dimensionless

time units are required. This value obtained from experience [33]
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is confirmed if we consider the "break in time" Te’ the time
during which the inlet length is passed by the flow in a tube,
that is
T = Le !
e . YV (1-39)

A

According to Latzko [U48, P. 2331 the following applies for
tubes:

; 1/4
L, = 0.693 (rey) MY (1-40)
where t&u.‘} ~ 30 I(order of magnitude [18]
therefore

1/4
Tez 0.023 Rem / j (1-41)

FOr Re = 108 we find TB”EJl
n

If we assume that commutation times of about 10 hours are
acceptable, we find that the maxlmum usable mesh number 1is
KM~ Lo, - This is probably the order of magnitude of the upper

I1imit which can be reached today.

More as a footnote we would like to state that the compu-
tation times required for KM # 1000 in one direction, according
to Chapter 1.6.1, can be realized in 20-30 years with a
reasonable amount of effort. We can make this estimation if we
extrapolate the computer Ilmprovements which have taken place
over the last 20 years. The computer speed increases by a
factor of 10 every 6 years and the core storage capacity in-
creases by a factor of 10 every 5 years {71]. Of course, some

regervations must be made about exponential extrapolation,

We therefore have the following results: for a complete /16
direct simulation of turbulent flows, a mesh network with about

(1000)3 meshes 1s required, already at moderate Reynolds numbers
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@Em*¥105). Based on the computer capacity of today, only mesh
networks of the crder of (llO)3 can be processed today, i.e. the
resolution which can be achieved 1s not sufficient to resolve
the turbulent structure with characteristic lengths of less than
%5 . Therefore, better models are required for this "fine

structure”.

1.7. The Purpose of this Paper

The overall purpose of this paper 1s to develop methods
for the direct numerical simulation of turbulent flows at high
Reynolds numbers. The results of the numerical simulation will

be used for the following purposes:

a) To improve our knowledge of processes in turbulent flows

b) To determine characteristic features of turbulence
which cannot be measured

¢} To test the validity of turbulence models for flow
fields averaged over time or over the ensemble. To
determine empirically determined variables and to
suggest improvements.

We do not intend to develop direct simulation methods for
practical design problems in technology. Instead we wish to
support the only practical turbulence models. We would like
to emphasize the fine structure model. This will be done
independent of any selected geometry, should be independent
of experimental support and should be valid for all variable

mesh sizes.
2. STATISTICAL TURBULENCE MODELS

In this chapter we will discuss the detalls of turbulence

models, their problems and the direct numerical simulation
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of turbulent flow fields using these medels. In particular, we
will discuss the problem of the "universal" applicability of
turbulence models. The turbulence models discussed are not new.
However, we believe that the discussion will be helpful for the
understanding of turbulent flows. In addition, we will definej
the turbulence model variables determined during an evaluation.

/17

2.1. Requirements for Turbulence Models and Purpose of

Model Theories

Turbulence is a random process [89]. It is not desirable and
not possible to describe all of the details of this process. As
a rule, we are only interested in certain statistical average
values, such as for example those of the velocity values, pressures,
or their products. Therefore,/it is not appropriate to solve the
unsteady differential equations and determine the solution.
Instead, the differential equations themselves are averaged first.
If we form the time average, (characterized by the < >) of fthe
momentum conservation Equations (1-7), we find equations which

contaln more unknowns than equations:

< > 5%«“;)‘(1“.5)) 3“(1" Y ""a—(" 8(1‘> Uf)) L 1”))’(2 1)

Additional unknowns are the following correlations named
after Reynolds [107]

ul ') = <(“4; -<w)) (1 "<"G'>)> ,

which have the dimensions of a stress per unit of mass, and

(2-2)

which are therefore called Reynolds stresses. It 1is possible

to establish differential equations for these unknowns [12, 115].
However, these contain a large number of unknowns which are triple
correlations of the type <”f1f“¥)l and  {y/p))| , respectively.

In this way we do not obtaln as many equations as unknowns for

a finite number of equations. A truncation must be carried out



in some way, and the other unknown gquantities must be calculated
using sultable approximations from the known variables. In this
case one refers to "closure problems'". The set of equations
obtalned with these approximations is called the turbulence model.

In the following we will describe a few turbulence models
and discuss the large number of suggestlons put forth in this
area. Summaries can be found in [53, 59, 91, 115, 127]. 1In
the formulas, we will restrict ourselves to one-dimensional,
Cartesian problems, and X will be the flow direction axis.

z 1s the perpendicular axis to x, measured from a limiting wall,
where we have 414>=-<1q)(:)4 It Is the general goal of turbu-
lence theoreticians to find a "universal" turbulence model which

satisfies the following requirements:

- It is valid in as many cases as possible (for various
geometries, boundary conditlcns, types of turbulence|
production, ete, )jwithout changing the model or without
any model constants, so that extrapolations into new
areas can be made without any new experiments,

- On the other hand it should be simple enough that it
can be used in practice with a Jjustifiable amount of
effort,

In the following we will discuss the existence of such a
"universal" turbulence model in connection with a few special

models.

2.2. The Prandtl Mixing Length Model

According to what was said above, in one-dimensional flows
only one component of the Reynolds stresses i1s different from zero.

Let us assume that it is
<uuf) = L ww)) (2-3)
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w!' is the fluctuation component perpendicular to the wall
(Figure 1). The simplest model for this ig the Prandtl mixing
length model [98]. Using a Boussinesg model [5], in which the

following expression is assumed for the molecular stresses,

Cu) = — oy 22 (2-1)

in analogy to the Newtonlian stress law Prandfl determined the
apparent turbulent viscosity uturb based on the idea of motlon
based on the individual turbulence balls (in analogy to the
kinetic gas theory) over a distance of one free path length

L {(the mixing length) as follows

Veus = L% [389] ] (2-5)

It 1s difficult to determine the mixing length L. In the vicinity
of the wall we find [120]

L.".".koZ'l (2-‘6)

with the K&rmé&n constant k ® 0.4 and for a large dlstance from
the wall

L = 0.1 * D,| (2-7)

where D is a characteristic geometric length. Van Driest [25]
then gave a formula for L which makes it possible to calculate
<uw9}into the laminar sublayer. This was generalized by
Pantankar-Spalding to variable shear stresses T [104]:

L = ;‘! [,f— exp [-—-z.Re TJIL/AW}]L (2-8)

The constant Aw considers the wall roughness T as the dimensionless
shear stress at the location z, which is determined from a

force equilibrium in the plate flow.

/1

—
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The Prandtl mixing length model has proven itself 1n many

cases, especially in boundary layer flows. For example, see [[104].

One obtains erronepus results using this model in the following

cases:

26
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b)

¢)

d)

e)

)

Equation (2-4) leads to contradictions in the center of
& channel flow, if the location of zero shear stress
{uw)=?, ig not the same as the position of maximum
velocity(%%fno )pecause of a non-symmetric geometry,,
for example annulus(or because of differences in the

wall roughnesses [90].

Equation (2-5) can produce large errors if it is assumed
that the turbulent exchange coefficients are proportional
to Viurb for scalar quantities such as temperature cor

concentration (which is done often [49, 104]).]

2
3T
with a time lag for nonsteady flows or flows which are

The guantities Viurb and ) are only proportional with

substantially accelerated by varylng cross sectlons.

In the case of complicated channel cross séctions, 1t
becomes difficult to determine L in a suitable way; in
addition the real exchange coefficlents have an isotrople

character; for example see [8].

For recirculating flows [49], such as behind ribs or
blockages [75], the model fails completely.

The model also usually falls for secondary flows and

other convective mixing effects.



From this, some people infer that it 1s not possible fo have
a universally valid turbulence model. Most researchers in this
area attempt to expand the range of validity of the turbulence
models by considering other variables and approximations to
the exact equations which are valid for this case and which can

be derived from the basic equations.

In fact, a universally valld model probably does not exist,
unless the Navier-Stokes equations themselves are used. However,
just 1like the Prandtl model can be locked upon as universally
valid at least for simple channel flows and in many cases, we
can expect that a model which extracts somewhat more information
from the exact equations will have "universal" validity i1in many

cases.

2.3. Energy Model According to Prandtl /20

Prandtl also suggested [99] such an improved turbulence model.
He set:

(ww') = - q, Y L 57= a“') (2-9)

The exact time-average kinetic energy (E'};_-f_5<(%-<u‘.))4)’ of the
fluctuation velocities, which is required here, satisfies the
following equation which 1s derived from (1-15) by time averaging

(with v = const)
o= ‘a%' —a—fﬁ>—( ‘£ <"wf='j 4—,,"1.,}_‘3_‘_“_)_ ng au‘? ?\ (2-10)
. \ /

Diffusion Productiocn Dissipation

Approximations for the underlined and unknown correlations
can be introduced from a dimensional analysis or with simple
models. Therefore we obtain the following model equation [115]:
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D [, 94E) a<"'> a<u> ZED
o ::é..i_[ 31/_‘ L. ] < — Q.! T ,i (2_11)

k"

Diffusion Production Dissipation

The model consisting of Equations (2-6), (2-9) and (2-11)
contains the Karman constant k as well as three constants
215 85, 23 which are determined from experiment (see Chapter 2.6).

This model is especlally advantageous where the Prandtl
mixing length model fails because of restrictions b) and c)
mentioned in Chapter 2.2. Nevertheless, the calculation of the
length scale L is probelematical and it is computed according
to Chapter 2.2 as a first approximation. This is a considerable
disadvantage for recirculating flows, as the paper of Runchal and
Spalding [116] clearly shows. These authors use the model given
above to calculate the flow field (and from it the temperature
field) after a sudden tube expansion., The calculated streamlines
are impressive. However, when one reads that the field of length
values L was determined using complicated algebraﬁc equations
containing four empirical constants such that the velocity field
agreed with the corresponding measurements, one is disappointed.
The temperature field calculations are the only ones that are of
any value. Consequently, 1t 1s necessary to have models for the
length L, which are obtained from approximations of exact

equations.

.
n
|_I

2.4 Length Models According to Rotta

|

As mentioned above, for an example, it 1is necessary to know
the characteristic lengths L for turbulent exchange processes
in a description of any turbulence models. Such a statement is
typical for turbulence problems. Incompressible flows are

characterized by the fact that perturbations at one location
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are transmitted to the entire flow field through the action of
the pressure fleld (see Chapter 1.4.2). This becomes clegr 1if
we conslder the general solution of the Poisson Equation
(1-19) for pressure [1347] (for v = const):

pLx)= JSS s o (% Jw)-l—d%j’)

(2-12)
Turbulence variables, which consider the spatial structure

of the flow,/also represent statements on correlations between

variables at various points in location-time space [53, 11517,

in addition to length scales. This is also true for correlation

spectra at a location as a function of the time frequency f or

as a function of the three-dimenslonal wave number vector

k [132, 53, 116] (see Chapter 4.2.2). This is also true for

the derived variables, such as, for example the average frequency

[68, 127].

In order to have a model equation for a length L, it is first
necessary to give a suitable mathematical definition of this
length L. The mixing length model is not sufficient to define
a theorem according to the exact equations. Rotta [108, 115]
gave the following definition for one-dimensional flows:

: D
P
LEz1= 5 6( Heagars O (2-13)

According to the following sketch, this length is the integral

of the correlation coefficient

QulEru o) -};
(("";’“’)’} 4 4" /
/]
/ /A
?‘ »
"/ /.
e .
A"+ D

29



(The negative course for T>? 2, 1is a consequence of the continulty
equation). The quantity L defined in this way can be interpreted
as the average dilameter of turbulence balls. If the time

derivative of the integral given above is formed and if we substitute
ay
ot
determining L [109, 114, 115]. The following eguation presentation

the momentum exchange equations for , we obtain an equation for
shows the exact equation on the top and the approximation adjusted
by Rotta [114, 1151 on the bottom

/22
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Dimensional analysis can be used to cobtain the approximate
equations (especially for the sink term and the pressure velocity
correlations). Also analytical methods must be used. The
approximation of the production term is based on a Taylor series
development of the integrals. Additional terms of the type
]fl%%;?,n=5,7”.are conceivable., Up to the preseht, only the
first term was considered (a5 = 0), as will be reported on later
on. This together with Equations (2-9), (2-11) represents a
model whilch makes it possible to calculate<y5,(§),and I. based on
the so-called transport equations and (1(10?1 bhased on an algebrapc
relationship. Numerical methods for solving this and similar
equations are given in [U49, 104]. This model contains 8 constants
ay When using an additional transport equation for uw)|
according to Rotta [114], 13 constants are required. The main
problem of turbulence model theory then consists of determining

these constants in a suitable way.

2.5. Methods for Determining the Model Constants

Three main ways can be used to determine the constants,

for example ay to ag!

a) Consideration of limiting cases in which many terms

(W8]

|

can be ignored, (such as the immediate vicinity of the /2

wall where the Prandtl mixing length model is wvalid)
or homogeneous turbulence (where all terms of the

transport equations for L wvanish).

b) Integration of the differential equation with selected
values of the constants and variation of the constants,
8o that the integral results agree with as many
experimental results as possible "target values”

in the sense of a least square fit.
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c) Direct determination of the constants by measuring

the terms which occur in the defining equations;

S CTED,

{&Ye/L | (2-15)
Method a) makes it possible to determine only a few

constants. Method b) has been used by Ng-Spalding [91]. For
plate flow, tube flow, plate boundary layer flow and free jet flow

for example

o

2

they used measured values of the following ftype as target values

(<'”>ma,\' = ‘214>)J
for plate and tube flows.

Method c¢) would be the most exact one. It willl be possible
to determine whether the "constants" are indeed independent of
location and flow geometry and whether the model i1s therefore
universally valid. However, the measurement technique falls here
in almest all cases. The measurement of complicated correlations
of velocity derivatives ,)pressures and their integrals over space
1s almost dimpossible. Perhaps the energy dissipation i1s an
exception, which is required in (2-15). The space derivatives
are usually determined by measurlng time derivatives and

recalculating using the Taylor hypotheses [134]
X % Ludet) (2-16)

(for discussion of these problems see [115, P. 148]), also

local isotroplc conditions are assumed (see Chapter 4).

Therefore, one of the goals of this paper i1s to numerically
determine the termg contained in the definiticn eguations
aceording to numerical simulation of position-dependent and
time-dependent flow fields, in order to determine the constants.
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2.6. Data for the Constant Values, the Influence of the

Uncertainties in the Constants and Their Numerical

“~
Ny
I

Determination

|

Table 1 shows the constant values given by various authors.
If is difficult to make comparisons because the length L has
been defined in various ways, which according to (2-9) is
expressed 1in particular by the value of the constant aq- We
can see the following:

a) No agreement exists regarding the values
b) No data is given for the second development coefficient
ag of the length-product term (a5=0).

¢) It was found that the constants are not universally
valid. Rodi-Spalding [113] had to use constants for
a turbulent free jet emerging from a round or rectangular
nozzle which differ by almost a facter of two; Ng-Spalding
[91] used a position function for ag-

It is very important to establish the variations of the
model eguation solutions which are obtained when the constants
are varied. In other words, what are the effects of the uncertain-
ties in the values of the individual constants. Ng-Spalding [91]
varied their constants by 5% each to investigate thls question and
calculated how much the integral values used as target values
varied. On the average we find the variations given 1n Table 2.
The constants are sorted according to the magnitude of the
target wvalue change brought about by their variatlon. We can
see the followlng:
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a) It is more important to determine the constants exactly
which are contained in the source and sink terms than

thoge in the diffusion terms.

b) It is very important to have the correct model for the
length-production term. This means that additional

terms should also be considered.

In particular, item b) represents an important justifi-
cation for an experiment to determine the constants from
numerically simulated flow fields. A numerical method which
on the one hand does require models for the fine structure
cannot produce any particularly usable results for terms which
are greatly influenced by this fine structure, such a%[for
example the energy-dissipation term and the diffusion terms. On
the other hand, we can expect that those terms can be calculated
in a realistic manner which are primarily determined by the
resolved coarse structure. Among these we have the length-pro-
duction term and the time-average Reynolds stress (uﬁu?f . In
this paper we will make a particular effort to determine the

consgtants a1, Ay and a5.

3. BASIC EQUATIONS AVERAGED OVER MESH VOLUMES

In this chapter we will average the conservation equations
for mass and momentum over the mesh volume, in order to prepare
ourselves for the differencing method and the fine structure
model for direct simulation. In addition, we will derilve a
conservation equation for the kinetic energy of the fluctuation
velocities contained within the mesh. The chapter contains
purely formal derivations and therefore no approximations which

must be given a physical Jjustification. The method is new, and
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in contrast to earlier work, 1t is possible to build exact
difference approximations and fine structure models. At the
conclusion of this chapter, we will give a summary of the basic
ideas in the following chapters.

3.1. Justification and Definition of Mesgsh Averaging

In order fo build up a differencing method, the flow space
1s divided into as many regularly arranged meshes as possible.
For each mesh, one of the field values being integrated is
stored. 1In addition to the spatial division, the time axis 1is
also divided into a finite number of time intervals At and for
each time interval one each of the field values is stored at all
space locations. Then the differentials of the field values are
approximated by differencing field values at the various adjacent
meshes. One arrives at such differencing aporoximations by
gither a Taylor series expansion and truncation of the series
after a few terms, or by formal integration of the differential
equations over a space-time mesh with subsequent approximation

of the non-analytic integral terms.

The Taylor series development can be truncated after a few,

for example, after n, terms [13]

"l

- N
fou= = & £tox", (3-1)
Tf the residual term "
X {nia)
Rutn = Zor £ ox) , 004 (3-2)

can be ignored for very lrregular turbulent flow flelds, it is
not possible to simply assume that the product xn+1£ﬁ+vJ will
remain sufficiently small for small x, because the derivatives
f(n+1) can increase greatly with inereasing n. Therefore, the
second method must be used for turbulent flows. Approximations

are also required in this case. They only assume that the higher
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derivatives of the field values averaged over|mesh volumes
(that is, smoothed field wvalues) are sufficiently small.

The effect of the irregular fine structure within the meshes
1s also represented in the averagedeguations. The so-called
Reynolds stresses show this. These terms cannot be obtalned

for Taylor series expansions.

Therefore, we will first use the method of Lilly [80, 81]
and Deardorff [29]. In the averaging, that is, in the integration
over the mesh volume and subsequent division by the mesh volume,
these authors did not take into account that some of the inte-
gration can be done analytically. Therefore,)they have to assume
that

LTS kfof-' l
ax X-4F ax dx ax *_% ’ i -

which is, of course, correct. It would be correct to assume that

e
oz du L e ) -uleF) S, (3=
ax ,*.5; ox Ax = vy = dux

Consequently, the field values considered in the differencing
method have been falsely 1dentified as volume average values.

It is more correct to say that they are area average values.

The same difference formulas for the averaged field|values can

be formally obtained from the above (forlequidistant | mesh networks
However, this leads to a different definition and approximation

of the Reynolds stresses which describe the fine structure.

Also the boundary conditlons for the different formulas are
different. This will become clear in the following sections.

YFlrst let us explain the mesh network used and the
average values used. The mesh network 1s determined by a field
(not necessarily equidistant of surfaces xi=const. and t=const.)|
A mesh with the indices 1, m, n, p is made up of the following
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space-time element:

( ) X“’(_,Ai < X‘ é X,(fe‘,f |
- X x, £ Xulmed
Vy mmpp = ] G Huog & % ) (3-5)
e xlln-{ e Xy & Xpluet
l tlpge & £ €(prt ‘
where the coordinates xl/l "'% xE/ﬂH‘é ? x3/n+ %’ t/p+:,13 inerease

monotonically with the indices, and in addifion we have, for
example P 4"44 = x_,,/ . 5
lenz T ez
1> ot, = tf,g - tlp-g >0

The averaging of a variable y in a volume V' (which
at the same time equals the mesh volume as well as a space-
time region which is displaced with respect to the mesh volume)

is defined as

Vie p ’
Fe & U5y (3-6
If the volume V' 1s equal %o Vl m,n,p? we have:
Cartesian: _ ﬂ—fp.:{ X,{;,,:i )‘Jm{ ""/&f
Vo™ sy | ] e
= gt r {
y]e‘m’,,’f, dx‘/zﬁxzfmdkl’“‘ﬂ*{p M y()ﬂflkg',xg li)d& Xmﬁ’xjd \
qP'i 3/5-% 'QL,_{ )51/(.{ (3-7)
Cylindrical: C Yord Tt e Vet |
"gf ® <l j S ?" r 7 ¢t e relp dt dtl
Gupf B A 8% T S fog 4 Bt pe (3-8)

'ﬂh = {' ('ﬂu‘t{"/m{)

3.2. Continuity Equation (Mass Conservation)

First we will consider cartesian coordinates. The exact

differential equation _ou | (1-6)

o x, i
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is to be averaged over V. We obtain:

Yr—e
ou ., . __ = OY o ot ! HE' (3-9)
v e e SIL S B i

If we consider the fact that each of the three sum terms of the
integrand is formally integrated with respect to one of the
coordinates (the Xi‘coordinate) we obtain differences of two
terms in which i% is only necessary to integrate over two space
variables and time, that is over a mesh area segment and a time
interval. This region defined in space-time space is called
"area" in the following. In order to simplify the notation,
we will call these area averages ii, for example

tpeg st Mlmpd |

4.../ -~ ( 7 s
! = X x4 fulc oot
q {’.c{,m,nﬁ: S axaf, axgl Aty Alp-d A3lpa  Kalwe-§ Y 4/{’4-{;)(1: 31 y, 104
and we will call the differences which occur’xﬁg;{ where,

for example

, _
J"A 3’?,;&4 wp = ‘:}:7?( g{’#{’k’}w‘,fv - ?e’—%_,m’u,f)!

Then the averaglng gives,
au = Oy
S = Ox, " (3-10)
€ v mp ive,mp o / 28

This equation is exact and has a formal correspondence with
the Gauss integral theorem [13]

jdm:u c!V g - £

Tn a similar way, we find the following for cylindrical coordinates|

(starting with (1-8))

rf Vy + ,,, dlf i’*'f d;-(‘”"r) O, (3-11)

i p
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Wwhere, for example

X— A
vx

Ths f’,‘,,{ tprd , ‘ ’
, § W g, pimit) dy e ot
eff,ﬁ,‘ﬂ;ﬂ d'rh 1;‘ ﬂ"fm Afp l],'_{ PM-{ T P"f. ( 3_12)

n

and the difference guotients 5}sdk:‘ﬂ4 are defined according to

the cartesian 'Jx‘-s .

We will repeat the result: At least the continuilty equation
can exactly be replaced by difference/formulas, if the velocity
average values which occur are defined as average values of
velocities over a mesh area segment (as well as over a time inter-
val At), the normal of which is parallel with the velocity component

vector.

Since these area average values are ftaken over a different
area segment of the mesh, depending on the velocity components,
a so-called "staggered grid" [29, 30, 33, 42, 54, 62, 96, 1417,
is used, i.e. an"overlapping grid" in which the velocity values
to be stored are asslgned to varlious locations depending on the
direction. Figure 5 shows the grid used. This grid has up fto
the present not been used in the literature for formation of
area average values. It has only been justified because of the
simplicity and accuracy of the ftruncation errors of the resulting

difference formulas [33, 96].

3.3. Averaged Momentum Conservation Laws

We will now derive the average momentum conservation laws
which are similar to the average continuity equation. Because
of the complicated nature of these equations, we cannot expect
such a simple and elegant regult here. However, we will show
how a different notation can be found using a formal method which
is very close tc the differential equations. We will also show
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where approximations will have t¢ be made.

Depending on the equation component, a volume 1s averaged|
according to the staggered grid which contains the reference
surface of the average surface value of the velocity component
under consideration in approximately its center. The following
sketch shows this Vl for the component 1 of the momentum eqguations

in cartesgian coordinates:

Aa'dﬂf{‘p‘n
X N ' 3 \ X nesq
‘ k\\ : X2t
Xy "y I s -
Xl -4 X.{[e* 4 XA’&% j,
x”’f_"—: % (X-"!(_% + )‘:‘[e*()! (3-12)

The limitation of the volume Vl in Xl direction 1s selected

between the coordinate surfaces x,/l+ 1 = const,/because in this case|
1 1
2.

the error of the difference approximations required later on
becomes the smallest., If the momentum conservation eguations are
averaged over such volumes Vi’ and if formal integrations are

carried out wherever possible, we find the followlng:¥

Cartesian: .
T , i
Vo= §—— : . e FN. . Dus - -a.\
oul , Y dus, 2%) o, B (3-1)
¥ =~y () - I, P + dle Vigs t o e '

¥ Instead of integrating the differential conservation theorems
over volumes, one could start with integral conservation theorems.
It seems that the procedure used here is simpler when curvilinear
coordinates are considered.
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Cylindrical:

Vk——

2 Uy cfx““; 4 4 e —
FYy + xvx +$n (‘U('p )+—d',,.(—f-v_,vx)_h_ P +?A’
X ot
v 4
'f'd;{vl.a—_z ¥ { } ,,.d'.,{-r v(a"x &Oa)}i
Ve—
‘f e p
%%z + &, (D) + _'f.o’v(u?,z) 20 (F0vg) + % (opUp)=- 14,5

+Jx{v

s+ ‘@{2*’( +*—1z)j+--d;[w( gz)fw}m 15)

+ {l(T—(U)+WI)]

r—r —cr_,___

g?- +dy (ﬂx’l’f)+~——d',’,(u v,.)+-—o[,(vu, - %_ﬁ = [
T
6 [ (3] o NP BNy

- v BV j
+3¢ .
Here

T/H"ﬁ‘* Z ( nea © ;‘;!‘('r -¢ +27;

(3-16)

is the average value of the radius| in the volume Vr.

Areas average values of weloecity products occur in the

convection terms.

and centrifugal acceleration terms). We may formally make a

(Volume average values occur in the Corilolis

division

If we define the fluctuation variable ui

into average values and fluectuation variables as follows:

J( L{t“j-{(—‘; ) ( WJ- -J?‘;;) (3-18)

.

to be the loecal deviation
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of the velocity from its (area-) average value,¥

oo R i -
; ,: U, JH‘_ | (3-19)
then we obtaln
§ . J = J i _
(ueg )= “u Ty Yy (3-20)

We find that terms occur also here which can be called
Reynolds stresses [107], just like what occurred in the time
averaging according to Chapter 2.1. In contrast to the Reynolds
stresses which occur when time averaging is formed, these vanlsh
when the diameter of the volume goes to zero because in this
case ui also goes to zero.

We will thus repeat the results again: Many terms of the
momentum conservation equations can be formally integrated for
volume averaging and then can be transformed into difference
form. Correlations occur among the fluctuation velocities
referring to area average values (and sometimes volume average
values) which are of the Reynoclds stress type. However, they
become zerc when the volume element diameter goes to zero. In
addition to these Reynolds stresses, there are numerous
velocity average values, which do not agree with those stored in
the grid, as well as terms with derivatives (however, only
first derivatives). This means that more unknowns than equa-
tions exist and these unknowns must be calculated from the known

velocity average values using approximations.

The approximations will be introduced in Chapters 5 and 6.
In order to provide approximations for the Reynolds stresses,

b - .
¥ The notation Yy = ufjui\would be ambiguous; this complicated
notation is not used because it is always clear what 1s meant.
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it is first necessary to formulate the conservation equation of

the kinetic energy averaged over the volume.

3.4. Average Conservation Equations of Kinetic Energy

In the following we will derive a conservation eguation
for the kinetic energy of the fluctuation velocities within a

mesh volume, that is for

V— v T v—
I S A ?4)2)\

We obtalin this conservation equation by formulating the

time derivative

Ve— v Ve
& _ (4 daur _ Voo dw
ot 2 9t M- 2

We formulate the volume average value using Equations (1-7) and
(1-9) respectively and then subtract the scalar product of the

velocity vector Q@\and V%%] using Equations (3-14) and (3-15),
respectively. ’ ‘

Just like in Chapters 3.2 and 3.3, we obtaln the following

for cartesian ccocordinates:

\4 1 v g {—
%1:4[-2- = -a%s = - JxJ- {.'“J'E)“ Ox; ('“[‘P)“’; (3-21)

J V— W \
E (m —
(v (85 + 255)) € +un
If we introduce the following as fluctuation variables

according to (3-19)

i= - [l R vy -22
CHERCTRACTEN I AL o O V'="J"j (3-22)
where the bar refers to the averaging process, and
. § o |
S-.- P -___. 1 J—!-__ J .-'-—. 2. _
= 3 (‘u‘) ; E'= 4 (v ‘u‘)? (3-23)
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we find:

—- - Jja.l_l___ l
r = U(EW%+'WE *Iz?%) ﬂx“ u%)

!

-2

f— f—— Ve Ve~
= (WF)~ I (pw) + w h - €

w8, (¥ (2E + 25’ \ jaf'u;'u;)))

vay (v (3« 3] )

s
Lo
n

V-—

On the other hand, the scalar product !QE . %%?: is |

V

ﬂ

o g
+Vi'-‘{*.\[’v(a"‘*?a‘tf?‘)“' v(,,) ) ] |

If we introduce the following arithmetic averaging opera-

ey (g *uwwj)- T O+ G P

(3-25)

Tion: —_— P ax ax -
EREE S I e AT L %) N
and if we introduce the i1dentities
—_y -
dx; (ab)= O bt b dya, (3-27),
A —_—
Ed;"c-(gt)= o d;q,'q’ | (3-28)

by



and we assume the following approximation¥:
(O

V— %‘T-"‘\ (3-29)
U, _~- €;| 3-29
we can write: .
Ve V-—-—: P N -
U, ‘g?u‘-:—d;.(JEJ“j"’ ;“ )*J“'“" d‘kﬁ" (%"PJ*' e B
(3-30)

(**(a,,a % 05)- " (6% (4 ufoggu))|
v_ [ . "
-y (v (2 +84) ) |

If we now subtract the result from the Equation (3-24),
we find the desired equation

3]
Vagr - 7 =77
-gTE = —-\J‘k\ (_J, ) E )I_ u‘:'uj J';".l‘a"_‘l
= T . _ rivy
* -2k v =dw o 5,—:1}
(Vo ul WG - WE R
3E 04* u, Bw
i { v (35 T‘“" v(&,*a‘?{}
% + v{cf,, (J‘u+d’,t"})j
F ‘Yb o4
The terms have the following meaning:
I Time change of the average fluctuation energy.

1T Convection of the fluctuation energy.
ITI Production terms; work of the Reynolds stresses
v Diffusion terms; the term IVb can be i1gnored as a rule,

*# pccording to the mean volume theorem of integral calculus!
we have V— _ G ,, where is a point in the volume V.
U, = 'Lfé (_{);’ _rl
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because the viscosity fluctuations are apparently not
correlated with the other terms.

V. Dissipation of the fluctuation energy.

Va: Total Dissipation

Vb: Dissipation due to average velocity

3.5. Summary of the Basic Ideas for Formulating a Closed

System of Equations

In this section we will describe the models which will be
used teo formulate a closed system of difference equations, so
as to clarify the following chapters. We will only consider

cartesian ccordinates.

Equation (3-14) with the division of the conveective terms
according to Equation (3-20) contains two types of unknowns,
which must be calculated from the variables stored in the grid:
on the one hand there are quantities such as for example R%a”
which must be approximately calculated from adjacent mesh values
(for example,{from adjacent values of iﬁ;ﬁ ) using linear rela-
tionships (algebrafic average values). On the other hand, there

are the fine structure Reynoelds stresses QEFEJ which must be
calculated using nonlinear approximations from the average
velocity field 131 as well as from the kinetic energy of the
fine structure witﬁin a mesh Vﬁﬂ . Chapter 6 will discuss

the linear approximatlons, which are simple in nature. The main

problem and most of the development in this paper will be the

~.
(U8
[

|

discussion of the modeling of the nonlinear fine structure Reynolds

stregsses., In the followlng we will give a brief description of
the principles used in the model, which are discussed in detail
in Chapters 4 and 5, as well as in the Appendices 1 -3.
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A trial solution is used for the fine structure Reynolds

stresses, which have the form of a Boussinesq trilal solution:

X — (3-32)
r%"u.’ = -‘/J«f (_d.i L-+J ‘Ju)+f- cde'u'u

Here Ju ig the turbulent viscosity which must still be determined.
The subscript points to the fact that the viscosity will differ
depending on the size and shape of the area considered over which

the averaging is carried out.

The Boussinesq trial solution assumes that the shear stress
and the velocity deformation vanish at the same time. As dis-
cussed in Chapter 2.2, this condition is not always satisfied
for the time average flow field. The reasons for this are the

effects of the walls and the geometry which are deterministic

~
(V]
=

in nature.

The analogy between the Boussinesq trial solution and the
molecular Newtonian shear stress trial solutlon assumes that the
turbulent exchange process as well as tThe melecular momentum
transport process are purely statistical iIn nature. Thils
assumption is probably more applicable for the fine structure
than for the coarse structure. Therefore the assumption seems
valid. The Boussinesag trial solution accordingly represents an
approximation, because striectly speaking the Reynold stresses
must be determined by integration of a corresponding conserva-
tion equation (which is in the form of a partial differential
equation). The most significant error in such an approximation
is probably the fact that the Reynolds stresses in the approxi-
mation are more closely coupled with the actual coarse structure
of the velocity flield as represented by the grid, than the ezxact
equations state. 1In order to consider this effect at least
partially, the viscosity Ju is not calculated using an algebrajc
relationship from the velocity fleld average over the mesh area
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(as 1s done for the Prandtl mixing length model, Equation (2-5)
and also as Deardorff (see Chapter 5.1) has done.) Instead,

it is calculated as follows:
/Juz c (JE'.J#, | (3-33)

from the kinetic energy of the fine structure, for which a
transport equation corresponding to (3-31) is also integrated

at the same time. JET[ is the kinetic energy within the mesh area
under consideration, and its magnitude is jF. This trial soclution
has an even more detailed physical basis. Here we will simply
state that it has the correct dimensions and seems plausible.

The problem is now to determine the constant c¢. We will
attempt to find a method of determining it which is as independent
of experiments as possible. 8ince we cannot do this entirely,
we require that the experimental support is independent of the
ggometry under consideration, so that models derived from this

can also be transferred to other problem areas.

We obtain an equation for the determination of the constant
¢ by substituting the trial solution (3-32, 33) in the conserva-
tion equation for kinetic energy (3-31), in which the fine
structure Reynolds stresses occur in the product term. We now
assume that the turbulent flow under consideration is steady
in the statistical sense. This means that the time derivative
of the energy vE' vanishes when we take the time average. Zii
The convective and diffusion terms also vanish for the additional
averaging over the entire flow volume, because no kinetic enérgyiis[
transferred through the walls. It only remains to find the
difference between the production and the dissipation. This net
balance results in the equation for determining the constant ¢

(shown in the following for v«A ):
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) <e> ' i
COER® (o udfel b ) (5-3w)

c

We can approximatbtely transform this equation as follows:
e = <&

s o - —_—
7 B (0 i) 4% )

] (3-35)

(3-36)

Using the theory of isotropic turbulence and after the
experimental determination of the individual "constants" (the
Kolmogorov constant o), 1t is possible to establish a quantitative
relationship between the terms occurring in the denominator
of this equation and the average dissipation <e>. Finally,
the latter can be cancelled. The terms whichmust be calculated
are the time average of the kinetic energy of the fluctuation
motion in a mesh area as well as the time average of a difference
form involving the square of the deformation rate Diij » which is

defined by the following differential quotient: '

7 _ du; , di ) oW du 0% _

These terms are also called correlations and will be calculated
in Chapter 4 and Appendix 2. Correlations are related to
relatively complicated integrals using a purely mathematical
method. In addition to the geometrlc factors, only the correla-
tions between the velocity components at two points occur. These
so-called two point correlations can be calculated for isotropic,
incompressible turbulence using kinematic relationships, if the
energy spectrum of the velocity fluctuations is known. Physical
models exist for the energy spectrum which lead to the statement
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that this spectrum has a universal form under some conditions / 36
(this is known as the Kolmogorov spectrum) and in which only

one experimental constant occurs. From measurements of this

constant under varlous conditions, one is left to the conclusion

that this is a universal constant. Thils means that the correla-

tions which occur in (3-35) and therefore the constant ¢ can be
quantitatively determined. In the present paper, we have con-

tinued the development of the mathematical part of this computation
procedure used in earliler methods, so that we again did not use

meshes with the same side lengths. 1Instead, we used the actual

difference formulas.|

It may now be argued that the theory of isotropic turbulence
cannot be applied here, because the turbulent channel flow under
consideration here 1s very anisotropic and inhomogeneous. Here
we must apply the concept of local 1sotropy, as will be discussed
in Chapter 4.1. ©Nevertheless, trial solution (3-32) basically
contradicts the assumption of isotrople turbulence because in true
isotropic turbulence all components of the Reynolds stress tensor

uiu,

Because of the fact that the time average of the veloclity gradient

must vanish for 1 #[j when the time average is taken.

<C£%1g) is not zero, the trial solution (3-32) gives values which
are different from zerobr i,j = 1,3. For this reason, in

Chapter 5.2 we will develop a concept according to which the

fine structure Reynolds stresses is divided into its time average

(or period average values, see below) and the deviations from it:

3

wle! = 'u'u} + ( ’U!r -<JW>) (3-38)
I

The theory of isotrople turbulence ig only applied for sum term IT
(the "locally isotropic part"). A speclal model will be applied

to sum term I“("inhomogeneohé part"). This model is characterized
by the fact that it becomes the Prandtl mixing length model for the
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limiting case of very large meshes. For the other 1limliting case,
in which the meshes are very small, the Reynolds stresses

become zZero.

In order not to be restricted to steady turbulent flows
in a statistical sense by using the time averages, when the
division ig made according to (3-38), we will not use the actual
time averages but so-called period average values. The period
average value is the average value taken over those planes in
the flow channel in which the statistical properties of the
flow field are constant. According to Figure 1, these are
the X4
The term "period average value" was selected because periodic

-Xq for the plate and the x - ¢ planes for the annulus.

boundary conditions are prescribed (Chapter 7.1) 1n the
numerical model at the limits of these planes.

The model for the inhomogeneous part can also be determined
quantitatively, but not as elegantly as the model for the
locally isotropic part. Since the inhomogeneous part is only
very important in the vicinity of the wall, where the average
veloclty profile has large gradients, simple assumptions can be
used here. In any case, this division represents a significant
advance over earlier models, in which local isotropic conditions
had to be assumed even in the immediate vieinlity of the wall.
This is especlally evident because the numerical results
(Chapter 10) correspond better to the measgured values even for
a relatively large mesh, than do the numerical results of|
Deardorff [29].

The detalils of these models will be presented in the follow-

ing chapters.

51

™~



4, LOCAL ISOTROPIC TURBULENCE AND CORRELATIONS OF SPACE-
AVERAGE FIELD VARIABLES

~
Lad
o

|

We will establish some fundamentals for the quantitative
determination of the fine structure model using the theory of
isotropic turbulence. In order to apply this theory, it
must only be valid for local isotropic turbulence. In the
following we will define local isotropic conditions and we will
determine the range of existence by evaluating the corresponding
experimental results. Then two methods of calculating the
correlations of two space-average field variables will be
presented (1l.e. time averages of products). The detalls of the
theory of isotropic turbulence are contained in Appendix 1

and the calculation of correlations is presented in Appendix 2.

4.1, Loecal Isotropic Conditilons

4.1.1. Definition_and Justification_

A turbulent flow field is called "isotropice" if the
statistieal averages of arbitrary varlables which can be
derived from the velocity field and the pressure field (for
example(uﬂq>)b, are invariant with respect to rotation and
translation of the coordinate system. It is called "homogeneocus'
1f these averages are only invariant with respect to transla-
tions [6, 53, 115, 1347,

Channel flows are neither igotropic nor homogeneous.
Nevertheless, many results of the theory of isoctropic turbulence
can be applied, if there 1s local isotropy or local homogenefity.
The concept of "loecal iscotropy" was introduced by Kolmogorov [e77].
The author, Deissler [26], for example,speaks of "local homo-

gendity". In this paper we will use the following definitions
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for these terms:

A turbulent flow field u{x,t) is locally isotropic in the
vieinity having the diameter Liso of a location X, if

((wix¢l- <'u‘,._(zr))-» ( U (2,1)~ <'-*_’>(-’39’)} (4-1)

{28

1
is isotropic for .IE"ED} 5 1150’ except for deviations

which can be lgnored.

A similar requirement 1s that the Fourier transform

Ulht) = S( w k) exp[ VT 50 A V) ey

is invariant forlELZJJ13501With respect to rotation and transla- / 39
tion of the wave number coordinate system. This definition is
well adapted for the experimental determination of Liso'
Local homogeneous condltions are therefore defined in a

similar way, by the requirement for invariance with respect to
translations alone. Local isotropic conditions can be shown to
exist in channel flows as follows. Channel flows are anisotropic
in their macroscopic structure because of the anisotropic boundary
conditions and the momentum sources (average pressure gradieght
only acts in one direction). The "turbulence balls" which are
produced because of the macroscopically unstable flow have a
relatively large dlameter, which is only slightly smaller than
the characteristic length of the channel geometry. Since for
large Reynolds numbers, the dlssipation of the turbulent energy
only becomes effective for very small "turbulence ball" diameters,
the large turbulence balls must decay into smaller ones because
of the influence of the inertia forces. The pressure-velocity
correlations bring about an energy exchange between the velocity
fluctuations in various directions, as Rotta [108] has shown,
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so0 that the motion of the turbulence balls becomes more isotropic
as the diameter is reduced. This is the physical reason for the

existence of local isotroplc conditions.

The following two results are important for the quantilitative
determination of the fine structure model, and these results are
from the theory of isotropic turbulence. Appendlix 1 contains a

detailed presentation.

a) The two-point correlations}ﬁij = w x-71) U (X+ f.’!‘)}f

which only depend on r for isobtropic turbulence
( Rij xs)= Rey (-”:)}f , can be calculated using relationships
which are entirely kinematic in nature (i.e., they can be
derived from the isotropic condition and the contilnulty
equation), if the three-dimensional scalar spectrum

E(k) (defined in Appendix 1) is known; k is a scalar

wave number (Dimension: 1/length).

b) For the wave number range (inertial subrange) determined

by inertia forces

Y, e
< R (4-3)

Lo
we can glve a generally valid law for the energy
spectrum, which is called the Kolmogorov spectrum:

-S/3 |
E(R)= a<<<5>% A 35 (4-14)
« | Kolmogorov constant (a = 1.5 , see Table 3)
k scalar wave number (Dimension: 1/length /4o
<EY| average energy dissipation
Ly macréscopic length scale
n = (v3/<€>)”"f* Kolmogorov length
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Using the relationships discussed under a), we can derlve

the following from the Kolmogorov spectrum (see Appendix 1):

o _ A8 PR ey

Rpgrer (T) = Reqpy (@)= L5 T)x<e> "+ (4~ 4—,,1“)‘ (4-5)
Y Tty Ny

R‘:J' (£} ="§ F[%}d(é‘)’ 4:.,.‘9:"9 K H*‘J‘ (4-6)

_ . )
where T= (‘rg"l’)m= [ x! i

for

7(4'4-4 L, .

These correlations can also be calculated for other

4
spectra such as for example the Pao spectrum valid for kEﬁIA

(see

because it leads to analytical expressions for R

Appendix 1). The Kolmogorov spectrum is advantageous here,

13°

In order for fthese results to be applicable for the quanti-

tative determination of the fine structure model, that is,(to

determine the local structure within the difference meshes having

the average edge length h, the following conditions must be satis-

fied:

fact
that:

a) The length Liso

The Kolmogorov length n must be substantially smaller
than h.

and LO must at least be as large as h.

b) o must be a known universal constant.

In Appendix 1 we give the experimental proof for the

that these conditions are satisfied, It therefore follows
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For 3oo £h¢ o=l and Reynolds number Re_ >105 , the results
given above can be applied. The constant o can be assumed to
be given by the following formula based on many measurements
(also in a channel flow) and because of theoretical estimates,

to within an error of about *5%

g = 1.5

4,2, Methods for Calculating Space Correlations

In the following sections we will present two methods for

calculating correlations of the following type

R (a9, o, §)= B 20 % 0+ D)) G

Here Ml and wb are two turbulent fields (velocitles, pressures

or their derivatives){ Vl, V2 are space volumes usged for
averaging, which can be one, two or three-dimensional. Their
centers are specified by X or x or §,respectively. The averaging
operations are linear and are defined by integrals of the follow-

ing type — '
I‘/‘/% (x)= 7 j _frva()c+Y)olV(V}
o

(4-8)

As an example, the time average of the kinetic energy within a

mesh volume V 1is:
V= 1
E = %E‘ R('l“{;u(, Vlvlg)l

It is assumed that wh and Wg are locally 1sotropic within a

region whose diameter is given by the maximum separation between
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the points contained in the averaging volume Vl and the volume VZ'
In addition, we assume that the fields ¢E and wb are homogeneous

such that R{ vV Vv Ydoes not depend on the position vector
?A;Y’z, LY, 2,___
X. : - -

According to definitions (L4-7, 8) we have:

Rbt w4, 1) 0 () av(g)) (3 S epov)) oo

Different integration variables were used for the two integra-
tions. Therefore we have the following transformation:

RE 1,4, F)= (il S € 09)% o) av(y) ol (2))

Va

(4-10)

The time averaging < > as well as the space averaging are
linear operations, so that they can be exchanged:

.7 /f . ’
R(%,ﬂ_,%,%,_}’)— — E,S, é Ry 4 (_g—g-f)a/l/@)o!l/(%)(u-n)
(5+2) (h-12y L2

For example, for Yi#= Y, ¥y 2, y Ry 4 (£) = R, (fjl’ where|

Rll Fs given by (4f5). Using this mithd? Lilly calculated|

the correlations %(?E{» for \H:Véam=h,_§:91 [80]. The disadvan-
tage of this method is that six-fold integrals must be (numerically)
evaluated for the three-dimensional volumes. This is very
laborious. In the following section we willl demonstrate that the
number of independent integration variables can be cut in half,

as shown in [136]. This means that the computation times for

numerical evaluation of the integrals can be reduced from hours
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to seconds.

The space averages can be defined as follows accordlng to

[136]

Vo
v, = MO K (2) 4, (2)aV(2), (4-13)
where S )
I ky(2) odV(2) = A1, (4-14)

K(8) is a (normalized) weighting function. The only condition
it must satisfy is at J§L*°ﬁ it must go to zero such that the

integral glven above will exist. In order for the average value
defined in thils way to agree with (4-8), apparently we must have

0 14y | .
K, (2)= - | 41
NEIEN DIV X (4-15)
where the range V, is defined such that
facl ¢ 4 He ; e= 423, (4-16)

In addition to the simple welghting functions, 1t 1s possible
to define average values having weights which vary continuously
in space, using this concept. The corresponding correlations
can then be calculated. This 1s important in the evaluation of
measurements using the llaser Doppler method [15], where K(s)
corresponds to the light intensity distribution.

If K,(s) is defined in a way similar to Ki(g), we have:
R(v, %, Y%, V,,§)=< !‘.LI k,,f_:_;)qb,(g)a/l/{;))'. (4-17)

Y & (e pavie)
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After exchanging|the (linear) averaging operations

we find:
__ o .
R (b s, Ve, Ve, §7= S5 15 K, (g) Ka (2) Ry, oy, (-2 _{)dl{fg)d (éf{u_m

where RﬂﬂﬁJ according to (U-12).

, we find:

Using the substitutionlzzé-y , V(T )=av(®)
_ : . : , 3 |
Rt Vs, §)= S S5 Kelg) KulEey) Ry o (=) V() oV (2] (5-19)

Here Rwhwb is independent of y and it 1s possible to extract a
partlal integral, the so-called volume correlation %QCQL

Co )= S K (9)k (Z+3) dv(_y)\

and we have:

R v, %,V Vi, §)= S5 9, (Z) Ryy,y, (Z-%) dv(z)\;u_21>

Qalti)hiepends only on the geometry and the relative orientation

as a function dependent on the volumes Vl and V2. Often this

can be caleulated analytically. This means that only one integral
must be (numerically) evaluated, in which it is necessary to
integrate over one-half as many independent integration variables
as was the case for (4-11). In Section 2 we will calculate the
volume correlations which apply for rectangular volumes.

4.3. Results

In the following we will give the results for a few special
correlations, which follow from the preceding sections.

It is assumed that ui(g,t) is a turbulent velocity field,
which 1is locally isotropic in regions having the diameter Liso
where D, =3 DX ! holdS'CAxnmgﬂmaximum of the mesh edge length

AY, AX,, &g ). The energy spectrum E(k) is assumed to be the same
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as the Kolmogorov spectrum (4-4), so that the correlations

le(r) apply for | <L, | according to (4-5,6). The grid is

assumed to be cartesian and equidistant, but the mesh edge lengths

AX;E

small.

are not all the same. The %ime increment At is negligibly

Using the methods of Chapter 4.2, we calculate the follow-

ing variables.

T

o wwz
)| (F)s <ﬁ.—— ~3L; b 2 [ v (x,9,,2)- C"-l}}o/x...dx,) (4-22)
o |00 = (& (&5 4, 5G) (5-23)
2= (o ( ij‘?:}+c£;¢"frj);) - | a2
D = ﬁ< (4 G +d @) J) (1) *‘2< (d;;’z):) draaes1 (4-25)
o= 3 GG W - K Gram ) (1-26)
o| rep = (B (807 6.5 (1-27)
|

' =y
Remark to a) <% ’%iﬁ the generalizatilon of the volume
average value of the kinetic energy of the fluetuation motion,

extended to n-dimensional volumes. We have the special cases

o LA

§ Ede 2D S CED= ( "ié"— )1
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Remarks to b). The quantities kDE, k = 1,2,3,4 are various
forms of the average square of the deformation rate, given in
differﬁpt fq;m. The notation was discussed in Chapter 3. The

9
term < %»ii?- g-;:i{-f%:’é)/}/ calculated by Lilly [80] for AX4=AX2=AX3'-'-”"}|
. . : > LYY 2 Myt ) ] . - ,F . * ‘
1s identical to D=. The approx:Lmatlon( I Jox, ‘QEMJ’(%‘&/M":’Fg
used by L1111y and the difficult calculation methods are avolded
here.

Remarks to c¢). The term FED corresponds to the average
energy dissipation used for the approximation FED, jF here 1s
the contribution of the mesh surface, the normal of which is
parallel to the coordinate Xj; for example 1p = ax&-A&,L

The detalls of the caleulation are given in Appendix 1. The
results cannot be presented analytically, because the integrals
which oc¢cur must be evaluated numerically. Using the Fortran
Subprograms (E2, E3, D11, D12, D13, D14, FED1 described in
Appendix 2),wﬂfind

~
=

Q%ET> = £, -<s>ﬂ3 M,,”’ - O ' . | (4-28)
Y =4, <X p® Fa(2% 45) (4-29)

hy = (A&'A’_‘z)m A, o {8-30)
Gy <4 <™ 1 Eas &% 2% ) (4-31)
D = f <™ KT pur(wadh st b)) We32)
D = f ST om (ax/h, anfh, axg/h)  (4-33)
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For special values of the edge lengths

W b3 (ax /b ax /b, ax/h)

Dry (sxfh, axylh, 8% /h)

S &> FEDA ( 8% /h, A%, g. , 4% /h)
h = (8%, 2 8%)

= o ['(§)9/20 = A.8023

o F(%’)/.IJ’/SS' = A.3454

L
[ (xT( )y 729 fa5a25] = 47685

L}

(=15, T(3)=28787¢)

M‘.J é"'l: A'

(4-3%)
(4-35)

(4-36)
(4-37)

(4-38)

(4-39}
(4-40)

the numerical evaluation of the integrals gives the following:
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oX, 1 AXy 1 AXg AXx, AKX, 1 4%

= 1 :1:1 = 0.125:0.05:0.05
E3 | 0.746 - 0.825
D 11 ¥ 6.13 6.85
D 12 6.73 7.35
D13 3.88 3.90
D 14 0.984 1.32
FED1 5.30 5.29

(4-41)




as well as

E2(1,1) = 0.6293 (4-42)
4/2

E2(0.125/h,,0.05/h,) = 0.6821 h,=(0.125-0.05) (4-43

Comparison: Lilly [80] gave the following results:

E3 (1,1,1) = 0.761 | . (4-44)

Dii(1,1,1) = 7.66 : ' (4-45)

The small deviations between (4-UL) and the value of 0.746 can
be explained from (4-41) because of numerical inaccuracies,
which are understandable when evaluating six-fold integrals
numerically. The deviation of (4-45) from the value of 6.13
accofding to (4-41) can be attributed to Lilly's erroneous

. v V. i
assumption that < Du, bx, - Vau,,/a"‘z >= < D, [P, l‘-lau, f0x, }:.

We have the following general results: assuming local
isotropic conditions and for known correlations Rij(g) =
{uc-(_ar—gx')u“-(awgr)){ we can calculate time average products of arbi-
trary space average velocitles, using a purely formal procedure.

In the next chapter we will calculate a few such special
correlations. We will use the correlations (4-5, 6) which
follow from the Kolmogorov spectrum (4-4).

Without changing the method, the variables of interest can
also be calculated for arbiltrary spectra. However, if the
Kolmogorov spectrum is assumed, Rij can be caleculated analyti-
cally, so that one additional numerical 1nfegration can be

dropped.
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5. FINE STRUCTURE MODEL

R
=
-1

|

In this chapter we will give a justification for the
approximation for the area values of products of the area
average values referred to the fluctuation velocities, which are
called Reynolds stresses and which occur during the averaging
process of the momentum equation. In Cartesian coordinates, we
must approximate the following terms:

'b’" ’H'J' i L‘,J': /’,2,3 !

in cylindrical coordinates these are:

nt vy v [
i 12 :
‘D;(' ‘bf "UP '04,' 1)?
[ ! . 2
Qfﬂf v?c} vy ;

as well as the apparent stresses which are brought about because
of volume averaging of the Coriolis and centrifugal acceleration.
Vo —

vy -v,f; 'ur?',z

First we will determine the correlations which occur in
Cartesian coordinates. The terms which are valid for cylindrical
coordinates are then determined by simple analogies. Flrst of
all we will investigate the trial solutions used by Deardorff

[29,33]. We will demonstrate a few of the deficienclies which will
be avoided in the new model.

5.1. Boussinesg Trial Solution for Volume Reynolds Stresses,
according to Smagorinsky, Lilly and Deardorff

6l



In Chapter 2 we discussed the fact that the Boussinesq
trial solution is suitable only for steady boundary layer flows
when applied to the Reynolds surface which occurred during the
time averaging process. It can be assumed that the unsteady
Reynolds stresses, which are produced in the averaging over small
volumes or areas, respectively, are more appropriately modeled by
a Boussinesg ftrial solution ¥ because they have a smaller order
of magnitude. Lilly [81] described some of his experilences with
this in his older papers. These are two-dimensional simulations,
and because of this they do not result in the expected quasi-&andom
and turbulent flow fields. The two-dimensional simulation of /48
the turbulent momentum transport and heat transport gave rather
good results according to Deardorff [27]. This may be due to the
fact that the temperature field represents an additional degree of
freedom here, which makes it possible for random fields to be pro-
duced. Leith [82] has suggested a special model which is suitable
for two-dimensional furbulence. The Boussinesq trial solution for
the Reynolds stresses caused by the turbulent fine structure was
first used by Smagorinsky [118] for the simulation of large space
atmospheric circulation. Lilly [80, 81] followed the ideas of
Smagorinsky and suggested the following trial solution:

v Ve A V-_—"‘l
' P PR B . ' ¢ (5-1)
with the deformation velocity
' dws dus
Dej = o5~ * Tom— (5-2)
and the turbulent viscosity
(5-3)

pa= el [ (T

# This statement was already discussed 1n Chapter 3.5.
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where c¢. is determined, as discussed in Appendlx 3.

1

We must consider the fact that, in contrast to the derivations
discussed in Chapter 3, Smagcrinsky, Lilly and Deardorff considered
the following Reynolds stresses averaged over mesh volumes V (Edges

axg' )

] ] b V-_ V—'
wmlw! = U" 'UJ' - U, - UJ (5-1)

No averaging over the time interwval At is inc¢luded here. Lilly

[B0, 81] justifies the trial solution given above only for meshes
with equal side 1engths|

h 2 Ax, =AX,= X (5-5)

Deardorff [29] transferred these derivations through meshes
which did not have equal sides (1-28) and assumed that the
characteristic mesh length h is given by
| *'13‘ (5-6)
h= (AX“-dK,_-A)(s)
The methods used by Smagorinsky [118] and Lilly [80, 81] for
calculating c, are shown in Appendix 3, as well as their

results and the expected values of Deardorff [29, 33]. In
addition, the caleculation of ¢y using the methods discussed

here is described.

The fine structure model as developed by Lilly and applied /49

by Deardorff is based on the following assumptions;:

a) Locally isotropilc (homogeneous)} turbulence
b) The Kolmogorov spectrum is valid
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c)

4)

)

g)

h)

i)

3l

©

Use of a Boussinesq trial solution instead of integrating
the conservation equations for ﬁu’*g’

tugqf is calculated in a deterministic way from the
average velocity field, even though we only have a

statistical relationship [43].

Use of a conservation equation for| ?F? which is derived us-|
ing another averaging operation than is used for
averaging the momentum equations. (See Chapter A 3.2.1)

379/

<(v5q_z)3&> o <"]§_‘.;, / (Equation (A3-15)

<£'>=s(£>f/, Equation (A3-16)

Re>>> 1 (molecular viscosity is ignored in the momentum

conservation equations by Deardorff).|

A theory exists only for magss volumes having equal side
lengthsﬁ

L111ly's assumption of difference formulas for caleculating

V= ‘
Dﬂj(Ajég)woes not correspond to the difference formulas

used by Deardorff.

It is erroncously assumed that the same difference
formulas are valid for both factors in (A3-14); different
formulas according to (A3-44) should be used.

The model used by Deardorff [29] has the following deficiencies

and contradictions:

a)

tq”g’! is completely correlated in time with the
velocity field, even though the development of these
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b)

c)

d)

e)\

£)

g)

68

Reynolds stresses is a dynamic process (more precisely,
described by the unsteady conservation Equation [115]).
Therefore, the magnitude of V;F;;"only increases with
a time delay, if the sguare of the deformation velocity

increases.

The assumption (5-6) for h cannot apply, because according
to it, for example Ax,-» @ 1t also follows that h -~ 0,

. "
whereas we have J.ne Vu.'u_;’ = “”""a" + 0 I-;
ey ‘ < |

Y ——
u /Y |is isotropic, even though an anisotropic grid 1s

used.

When the difference formulas (A3-33) are used for calcu-
lating (ﬁiu)ﬂr , then the turbulent viscosity u will also
be positive according to (5-3) if the flow is laminar,
where 1 = 0 should apply.

V——\
The fact that <mgu;)#wﬂ contradicts the assumption of
locally isotropic turbulence, where all ﬂﬁqg)zd for
i#J.

For &%%* and é&*”} (for example), we have)ﬂ?wf. In
other words the model contradicts experience for these
limiting cases. Therefore it is questionable whether the
model ig sufficiently accurate for finite Aﬂf
The Kolmogorov spectrum nust also apply in the prgvailing
theory for very small wavelengths j@g%\ because <5£

1s obtained according to (A3-20) from an intregal over
kg-E(k) over all wave numbers smaller than-%?L Even
though the error will be small because of the factor k2,

we nevertheless see a weakness of the theory.



h}) The concept of modeling of volume correlations '«
is erroneous 1in principle; zccording to Chapter 3,

area average values must be approximated.

In the following chapters we will derive an improved fine
structure model, which will avoid all of these weaknesses and most
of the assumptions.| Only assumptiens a) to d} are required for
establishing the improved model,/but later on their effects can be
partially decreased.

5.2. Improved Fine Structure Model 1n Cartesian Coordinates

— — — et —

The channel flows under discussion are expressly inhomogeneous
and anisotropic turbulent flows. According to Appendix 1, /51
the assumption of local isotropy can be looked upon as being
valid for sufficiently high mesh numbers (KM>30). Nevertheless
it is desirable to have a model which will still be wvalid for
inhomogeneous flows, if the mesh number limits cannot be exceeded
sufficiently. Such a model must satisfy the following boundary

conditions.

Jr—
a) The contribution of the Reynolds stresses <‘ufﬁ h
calculated based on the assumption of locally isotropic
turbulence must as a consegqguence satisfy the followlng

condifion which 1s characteristic for this assumption

J Ty = . L
< 14‘-"!(_,; > =0 (,Jsd,.Z,? }' A‘.-‘x‘"d \ (5_?)
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b) Considering the inhomogenelity { {u,(4) # const)|for the
entire model we must have

< JMA, MS'>¢O 7 J.=‘4l3 (5-8)

¢) The turbulence model used should agree with experience
in the 1limiting case of very large meshes because 1t
then becomes the simpler and well known model. For
example it should be transformed into the Prandtl mix-
ing length model.

i 22— 2 94w 9L
wu!' ) = - L . -9)
2%::%:< 4”3) 0 X3 [ B X3 (5
X3 =

where L is given by (2-8).

d) For the opposite limiting case Axé-)o[‘ﬁ.ﬁg), of course

we should have <ﬁﬂwﬁ)¢o}.

(5-10)

should vanish.

e) For ¥»w|, i.e. for laminar flow, ‘3

In order to establish the fine structure model according to

these requirements, the turbulent flow field is divided into

P+ b @)\ (5-11)

i

I
P |
u, = u + (W), P

5

?
where <U> 1s the "perilod average value" of y:
P * PR TR - P |(5-12)
= b — oy x, kg, Xyt olx, ok, = > (x,2)0 77
<,[,j3 S X,ve X, X, 05 !..J/ i o I

. _?':1__"’ v

The Reyﬁold stresses are divided up. in a similar ﬁéﬂ

(5-13)

I

i— ' e
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The assumptions connected with local isotropy are only
invoked when the model for cuug)ﬂ is established. Therefore
cTORE A
qu“%f)t are called the "locally isotropic™ Reynolds stresses.

!
i

The residual terms gé;?%?}i are called the "inhomogeneous" Reynolds
stresses. In the following we will first derive a model for
calculating the locally isotropic part and then derive a model

for the inhomogeneous part.

In this section we will derive a model for (ngg; "l accord-
ing to (5-13).

5.2.2.1. Assumptions for the Determination of

_______ mptions for the Determination of
RN

The following assumptions are made for deriving the locally
isotropic fine structure model. Some of them will be restricted
completely in Chapter 5.2.2.5.

a) The turbulence 1s assumed to be locally isotropic
over a region with a diameter of approximately 3 mesh
edge lengths h (see definition in Chapter 4.1).

b) The turbulence has an energy spectrum E(k), which is

given by the Kolmogorov spectrum (4-4) for wave numbers
4 .

k)z%‘

¢) The Reynolds stresses c¢an be described using an appro-
priate trial solufion similar to the Boussinesq trial
solution for the Reyholds stresses which cccur during the
time averaging. Thils trial solution will be Justified
in Chapter 5.2.2.3.
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d) The Reynolds stresses can be determined deterministically
from the average veloclity fileld and the kinetic energy of
the fluctuation motion. (See Chapter 5.2.2.5.3).

e) Since triple correlations cannot be calculated with
the present theory ¥, we will assume the following

approximations:

CUFEY (4,.% %+ oh )J iz )= o (FENRU, e, ‘:,J)J "u> (5-14)
(BT = %< P (5-15)

S
n
(Wh]

where
BRE T (5-16)

v, A g A

]
(see Chapter 5.2.2.5.3).

f) The grid is assumed to be equidistant and Cartesian,
but the mesh edge lengths Aa@all do not have to be equal.

g) The averaging over A t can be ignored (see Chapter
5.2.2.5.1).

In this section we will show that the local fluctuation
field for locally isctropic turbulence essentially obeys the same
basic equations as does the entire flow field, and that there are
no additional terms which have to be considered which would describe

¥ If additional experiments are not considered.

¥%¥ ps for the validlty of these approximations, see Chapter
10.4.6.
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the 1nterasction between the fluctuation field and the total flow
field,

We will divide the filelds Uy and p into the perlodic average
P P
values <u‘.\, <1o)\ and the fluctuations u,", p" according to
{5-11). Then we will form the periodic average value of the mass

and momentum conservation equations and we obtain:
P
(L(‘:H%_’>)
< >+ 2 (v luweZ L))+
LR R R X

If we subtract these average equations from the initial equations

3
'9_< (5-18)

we find 7 9 ¢+"

Bxc AT (5-19)
aaf u*aT( ")" T,- "t . ["(9 TxT'”J):l

& B u oy a(%} ? 3“" (5-20)
-f-‘,’-x—j('br;"tg)* i Yol - &y -

Recause of the assumption of loecal isotropy, it is possible to
ignore the following variables 1n regions having the diameter Liso

[103]: /54
2 P hoeox )NO . ' 9 ? Sy e
o%; (' 2)% 2 se %0 (5-21)

If in addition the observer is moving at the velocity -4%9
then the last term in (5-20) can be ignored. This assumption 1is
permissible because it only aiffects the boundary conditions (see
Chapter 7.2), which are inconsequential within the region of
local isotropy. This 1s why the conservation equations for
momentum and mass of the fluctuation field ui", p" reduce to the
basic equations (with TEfOE ). Consequently, all of the
derived relationships, especially the conservation equation for
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)|

Vo .
Ew (3-31) are valid, if u, ,p 1s replaced everywhere by u,",p
and we set 7;=0 .

In the followlng subchapters of this section 5.2.2, we

willl write Uy 5P in place of ui", p".

In Chapter 3.3 we showed that by averaging the momentum

conservation equations, area average values of velocity fluetua-

P ]

tion products‘J%qag

are found instead of volume average values.

In this section we will discuss the model for which a Boussinesqg
trial solution can be defined in a suitable way. For thils we will
consider in particular 1;?;?1 wlth the notations of the following
gsketch

s

X2 (2—directionﬂ

(1-direction)

>
3

-4
Y= (A%-B%3) (1-area).

!
J
uqtu,. The product Uy Uy On the one hand describes the

A
The termslgéxuﬁ apparently were produced by averaging of

convective transport of momentum (per unit of mass) in the
1-direction because of convection in the 2-directionJand at the
same timeJthe momentum in the 2-direction beecause of convection
In the l-dirpection, The first point of view i1s applicable
for the l-component of the momentum censervatlion equations and

the second point of view is wvalid for the 2-component. The area
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Ao |
average value of uq"up over the l-area, that 1s w4, , only

occurs in the second egquation component according to (3-14). The

product of the fluctuation velocities averaged over the l-area /55
A . (5-22)
wiw'! = T - "5 u
4’ Z = % % - L]

is therefore the convective transport of the second momentum
compenent in the l-direction because of the fluctuation motion.
1uqﬁ' is therefore to be interpreted as the Reynolds stresses

A

which apply at the l-area (per unit of mass) in the 2-direction.
Only the momentum transport produced by the fluctuation motion
has to be considered here because 4a‘ﬁglis explicitly described

by the average eguations.

This part of the convectlive momentum transport can be

looked upon as the momentum transport due to small turbulence
balls. These turbulence balls must be so small that their motion
does not have any contribution to the average velocities, because
theilr motion otherwise would be described by the average velocity
fields and would be described by the average equations. The
cross-sectional area of the turbulence balls must therefore be
small so that at least two approximately equally large turbulence
balls having opposing fluctuation direction will have room in the
l-area; Their diameter 1eftherefore satisfies the condition

> N2
¢y & # F (5-23)

On the other hand, lggzzlﬂ does not hold, because the fraction

of kinetic energy of the turbulence balls increases greatly with
decreasing diameter according to assumption b (Kolmogorov
spectrum). The momentum magnitude transported by these turbulence

balls can be assumed to be proportional to (1gfﬁ where n 1s an
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exponent which must be defermined.

According to the interpretation given above of the meaning

— . .
of ALM%'% we must ask ourselves what are the contributions of
e

the motions of turbulence balls in the 1 and 2-directions to the
convection of fhe second momentum component. Any motion of

the balls in the l-direction results in a momentum ftransport in
the 2-direction, which in the first approximation 1s proportional
to the gradient of the velcecity u, in the 1-direction. This 1is
made clear by the following sketch:

/56

Any motion of the ball with a positive ul' results 1in a

negative momentum transport with a positive gradient aygagi and

therefore

|

Gy ~ = € W] g lox, || (5-2%)

4 2 A

with a positive proporticnality factor. Any motion of the small
turbulence balls in the 2-direction at u2' results in & momentum
transport in the 2-direction, which again in the first approxi-
mation 1s proporticnal to the gradient of the velocity uq in the
2-dlrection, and the same sign convectlong as used above apply:
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g
U & ~ 2" ] Iy, /oy, (5-25)
According to assumption a) (local isotropy) we may set:
= )7 _ 44'_ "
!ru'rl A IMI/ A ( ) 2 [__.( wut A :)J (5 26)

If the contrlbutlons of the fluctuatlon components are selected
and 1f the unknown gradients are replaced by the corresponding
difference quotients and if we consider that we must have

4 -«

! i - f ]
Uy - ﬁk*&

(5-27)

“ L

1t follows that:

, 3 .
Uy = - (F)" (e )™ (J;qz“: *ng“&?-), (5-28)

Here we have set the undetermined exponent n equal to one, because
then the proportionality factor Cs 1s a dimensionless positive
constant. When generalized to other subscripts, we have:

| ‘ _ i 7 e — e -
U = -G (/P E") (d}‘- Yy fvaJ- 'h;-)-k f—,."oﬂs (77

(5-29)

The last sum term was added acecording to [53, p. 217, in order to
have a positive contribution of dijaﬂ?y} in spite of the fact that
L !

J‘-‘)- (d;l. -1‘({,, “b) -ZJ | (5__30)

ll

The analogy to the Newton material law becomes clear if we define /57 |
the "turbulent kinematic viscosity" as follows:

(5-31)

]

T7



5.2.2.3.2. Calculation of the Constant cp

An equation for determining the constant Co is obftained by
substituting the trilal solution (5-29) intoc the conservation
eguation for the kinetic energy of the fluctuation velocities

within a volume element (3-31):

i — ]

0 E _ b yrron W - - y
Geo= WY i - & Convr Diff | (5-32)

where y— v— ' - — (-
&= E - ¥y [.JXJ"L;' (d:ch‘Jug' + Orxf 19)] l (5-33)

and Cbnv or Diff. are the abbreviations for the terms IT and
IV of Equation (3-31) which are not of interest here. Equation
{5-29) is substituted forJu'% The additional term :46;4§€E

[

vanishes because of (5-30)‘ If we take the time average, then
we find the following for stationary turbul@nce

2E N o-—<c (R (3, G 1) "o )~ <EY | (5oam
- (Convj}-/- L Doft) .

The two last sum terms vanish because of the assumption

of homogeneous turbulence. They therefore also vanlsh for a
channel flow, i1f in addition to the time averaging we also
average over the entire channel, because the kinetic energy
and its gradient vanish at the wall. Therefore we have the
following equation for determinlng cy

)\ |
— J o
{ (= (J&. G+ dy %) oy
The evaluation of the denominatér can only be performed if we
= PR -

<'(:p—5r) if;(Ja {’%() J‘ iﬂ
= = _
= ’&;(-’F:’> ‘((t{xi-‘llt‘,-i- O, ) d,‘,)ai)

C‘z:"

(5-35)

1

set:

(5-36)
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According to assumption e) we have set %-“1L This assumption
is hecessary because with the present theory, the correlation of
triple velocities which occﬁr cannot be calculated. In contrast
to the assumption used by Deardorff (A3-15), with only a small
degree of error we can assume that (ﬁ?’ fﬁ{is only slightly

s

correlated with the square of the deformation but because of

< (;’é,)’f¢> >_ < }"l

(5-37)

we should have 9, 734L

Thus 02 follows from

o <g)~ 1’<(Jx*4*n 5 ) % )w (5-38)
LT T G i) )

Considering the results of Chapter 4.3 (4- 32) and (4-36)

we find: \
C, = A - Cy
%, - fy FEDA(&%/b, ax/b,a0/5) { (5-39)
wnere = (g o 0% )™ |
3 Vg |
Cy = [V *) £ fo/f[ﬂ"frﬂ',df‘fz/l,,ﬂg/l,)! (5-40)
r \h*‘(s}/ . -~ - .
For o= 1,5, €= lwe find the following numerical results:
AX, L AXy 1 AXy = A A A vl AX AX, LAY = 0.128: om'ou'( 41
5-41
-7,
= (-7 (o)) 034 | (-290 G)E) o109 w

For very high Reynolds numbers, the correction term C,
can be ignored. For finite Reynolds numbers, y as well as
h and <e> are independent of position. Because of the small
order of maghiftude, <e> can be approximated as follows without
a large error (see 1-36)):
v N (5-42)
<e> ¥ &> = 2 <{ud 5=
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and therefore

€. = 03 4/’3
e () ety it )| 5

Starting with the exact Equation (3-31) (in'which,pccording
to Chapter 5.2.2.2.,|ui and ui" appear), we assume the following
approximate equation:

vy e v R -
8 _ _ I (% e )+ Prd (e, (‘FE’)‘”‘-J;,,'E']-—
.B‘f, N xJ 4 S ’ — A | A P
I I I ’ ‘ g

|
»js?_r-‘ (5-44)

The Roman Numerals I to V here refer €0 the ferms as in
Chapter 3.b. We assume the following for P and S, the production
and sink terms:

P=c, h D (E)™ (5-45)
‘

s = ca("z-:_')%/h - VG 'D‘J (5-46)

D2 is a difference approximation for the square of the deforma-

tion velocity D%} .
L - A a‘-ﬁ EU,' 2 \
O 2 ( oxy * T ] (5-47)

and its exact form is to be discussed later on.

By comparing the approximation and the exact equation,
we find the following equations for determining the constants
J .
03, Cu, 05’ '08.
. Le>h
= SV —
R
<?%§u; d%ﬁﬂ->
h< (& pr)
ey = FD /LD (5-50)

(5-48)

(5-49

2]
-
1}
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¢y = Loty Uni 6,5)) (5-51)
< bt

Such an equaticn cannot be given for determining the
constant %kl. It would be of no value because the correlations
which occur in it could not be calculated because their time
averages vanish. Since here the energy always occurs as an area

average, we also set |

Jm 4 .
C. = C. .C
e (5-52)

The constant ¢, cannot be determined from the theory.
Its value should lle 1n the following range, as does the
value for the time average kinetic energy (constant a3 in Table 1)

0L Cyt 4]

According to Chapter 2.6, the constants in the energy
diffusion terms do not play an important role. The value

e, = 0.3 (5.53)

has proven itself in practical calculations (see Chapter 10). /60
In order to calculate qur in Equation (5-49), the trial
5

solution (5-29) is substituted ] 7 ) o
oy COFE Y™ (dnitia; + 0y ) i ) \ (5-54)
h L (E™ pr) |

Cq_=

In the equations for c3 and an only triple correlations
occur, which cannot be calculated with the present theory.
Therefore, according to assumption e), we make the following
simplifications:

LEY 4L
AT | (5-55)
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C, = <J'F 515_'>‘{Q< (d-x{r‘l;} fJxJ ) ij"-‘> (5-56)
h ((E7) )" L o%

A correction {#dfactor)is not necessary for Cyos because
approximately the same error occurs in the numerator as well as

the denominator.

Two difference forms have been suggested for D2: *

a) !,D’-: (({ f“:\ h') (/{-JL‘JQ )4—2 CJ sl()l J[I.JEJJ\‘(5 57)

This formula corresponds to the formula derived by Deardorff
(Equation A3-36). It has the disadvantage that for the gquantita-

tive determination of 4GD?L we have an integral of the formn|

Hifn
{ & E(k) ol

just 1llke in Chapter A3.2.2. This means that it is necessary
to integrate over small wavelengths, and E(k) does not agree

with the assumed Kolmogorov spectrum.

However, if we subtract a term corresponding to the square
of the deformation velocity from 3D2, which is formed from
differences over twice as many mesh distances and which is

therefore determined by an integral having the form
2%
.‘L
3 KER] of &
then one can avoid the 1ntegrat10n over the wave numbers ]s( Tith

Tn this case the assumption b) mentioned in Chapter 5.2.2.1.
ig sufficient. Such a formula is the following:

b))

I\
(@)
—

_ J'
0= 'z 1 (d, 5« ed ) - 2( G e ) (5-58)

# See Appendix 7
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Another advantage of this formula (it would also be valuable
in (5-3)) is the fact that the kinetic fluctuation energy
is uncoupled more from processes which occur at small wave
numbers just like in physics. However, the large numerical effort
is one disadvantage of this feormula. The ratio (*D‘>/<3Dz> %can be
estimated as follows:

L/
2> g S AEGRIdE

<3Dl> = ?‘- A ETR) otk (5-59)
and therefore with B(k) = o{<€> ﬂ. we have:
CEEPD = A= (2 0 goa (5-60

According to Appendix 2, for DX, AX, 1 8%, = A1 A -.1 the exact
calculation gives:

Lp> /L PP = 0.287] (5-61)

This shows that the approximation given in Chapter A3.2.2

can lead to large errors.

Using results of Chapter U4.3, these constants can be
guantitatively determined as follows:

y |
¢, = |

(5-62)
3 g;[fd . Ea(diﬁr/h axy fb,8x;(h ﬂz/i l

G FEDA (S, 0%, 0% (5-63)

¢
4" [ E; (ox/h, 8%/t M,/;,)]”i DR (Pafn, 8%/ h, 8% /8)
A =23 |for DA*
& =4 for yDL

-~ f |
jC - Ez(é?(m,ﬂxh) M#W#J”T: (5—6&)
|

s E3 (AX‘UA}".\/‘QXJ)
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C, = D/!"f(dx"ﬂ‘;dk‘/"fax:iﬂ')

- S ' .
(? = gy Cx A C} 2 0.2 I

DA R (oxpli an fn ax,/4)
é_—:. 2 for 3 2 L
B=t rfor| ¢O°

We obtaln the following numerical values for

(5-65)

(5-66)

b-’:/f.ffﬂ’?;’/f

c -& A&:A}&:A}J:A:J:A 43",}"&1:‘&*3 = 428 :0.05:0.0€
e 1,022 0.884

ey |3 1.6301 - ¢, 1.57 - €4

Cy 4 6.87 - 7 . 4,80

105 0.8283 0.6135

Py 0.8283 0.9147

%o 0.8283 0.9147

cg 3 1.573 1.747

cg b 6.63 5.344

(5.67)
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¥ [
For known £'', the values of the area average values 7
required in (5-29), are calculated from

. . V=,
JE| = JC.S— B i (5-—68)

We obtaln the following from the time average of the turbulent

viscosity ffu |

Cud =< eI |
x o, 3™ XY (5-69)

/4 73 /
~ h 3 <e> / (because of 4-29)
i.e., the turbulent viscosity obtained from this model goes to
zero faster than the mesh constant h for given dissipation
(corresponding to the applied pressure).

It can also be seen that for the meshes used by Deardorff
[29], the turbulent viscoslities have the following ratios:

. - 7, "
A 4.7 2 3 3 _ - ' -
and therefore, we have expressed anlsotropy, which has not yet

been considered in papers up to the present.

In order to limit the effects of assumptions e), g) in
Chapter 5.2.2.1, corrections will be introduced.
factors are suggested for assumptions b), d).

[oa}
L

Correctlon
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In Chapter 3.1, averaging operatlons are defined as an
average over mesh areas or mesh volumes, as well as over a time
interval A%t. This 1s required because for the time integration

we set
U

r
3 ");“1‘.
which is obtained by a formal averaging over At. In this
Chapter 5 we have not yet considered the fact that the Reynolds
stresses ‘ugqfi contalin averages over At as well as over the
j-area. This will be considered by means of the following
J

|
correction factor Cq|

eys [/ (5-71)

This means that the complete trial solution is as follows:

(5-72)

. X e
4 ’ [ R j It < f e _-‘! !
g = = ey QUFE) Y (G e dfa)e §d,70q

In order to determinejcglaccording to the Taylor hypothesis
[132, 115], it is assumed that the time axis can be transformed

into a space coordinate according to *; =t <U42 . Therefore,

edge lengths Af-(ﬂ"),ax,“ldxh (ww.;)’. Prom the results of Chapter
4 we find |

E£3 (4{{ -u,,), BXy,, AX,

) i
g = £T(B%u,, 8% ) ] . (5-73)
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For the problem calculated by Deardorff [29] with

Ax, =0 41{"' ax =008 axy=0.0C , aT= 0.002, < >=28 l

we find:

ey z a0 | Ty s.09 (5-74)

/

, g =r.09 [

The effect of time averaging is therefore not negligible,
and becomes more Iimportant the greater the ratio Ab@?f&]

The correction factor therefore brings about a small ZQE
reduction in the anisotropy | of j,, according to (5-70).
v
5.2.2.5.2._ Consideration of the Deviations
of the True Energy Spectrum
from_the Kolmogorov Spectrum
(Assumption b)

According to (A3-20) and (A3-37) deviations of the true
spectrum at wave numberslc(ﬁ&\bring about errors in the calcu-
lated mean squares of the deformation velocitles, as well as
errors in the calculated average kinetic energies for k}ﬁii . In

the first case, one would have to apply correction factors having

the form
*lh
g

RTE(kIdk |
\ (5-75)

Cot = "7, -
S Aty (R)dk

and in the second case they would haverto be

. Efo‘ E(R) clk l (5-76)

Ca = 5 |
ié' Eﬁ(*dhfk :
where Ek(k) is the Kolmogorov spectrum according to (4-4).
Possible generalized forms of E(k), which for| ﬁA@ﬁybecome[
the asymptote kLl according to (Al-37) and for k»@ﬁlthey become

Pao spectrum Ep (A1-34), or as follows:
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Wy

- (R) ) E, (k) (5-77)

E(R) = (/f-

or 778 744 ‘

£(h) = (L&) Ep(h). | (5-78)

= I+ (LR)¥50

L is a length to be determined experimentally. Since no data
about it are known, the corrections wlll not be investigated for

kzﬁﬁ'

In the following we willl estimate above which Reynolds
numbers it is necessary to consider the Pao spectrum. From
(5-76, A1-34) it follows that:|

- 3 1. %}
Ce= exp[-Fat v Le¥® ()] (5-79)
If according to (1-36) we set (€5 = _2<q>[, and if we set
4,, >x25 L= oo.r\ according to [18] (corresponding to the minimum
Axi for Deardorff [29]) it follows that

- V. -3
Cox exp[-v/Cctnm 3= g~ m!for v 40 °,

(5-80)

/b

—

In order for this correction factor Ce to have an influence
which is smaller than 1% in the calculation of the kinetic energy,
we must have

v <& F.s075 (5-81)

Because of (1-14) the Reynolds number Re must therefore be
greater than 3- 105 In other words, the turbulence model used

¥ FPigure 22 shows that the Kolmogorov spectrum already applies
for the coalrse structure. Therefore it seems Justified to
ignore these correction factors.
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which assumes the existence of the Kolmogorov spectrum, applies
for re Z 105 . TFor Reynolds numbers,smalléﬂthan 105, the Pao
m =~ .

Spectrum must be considered. This assumption agrees with the
results of Chapter 4,1.2.

(Agsumption d)_

As mentlioned by Fox-Lilly [43], the model described up to
the present 1s a deterministic model according to assumption d)
(Chapter 5.2.2.1). The fine structure model used can only agree
with reality on a statistical average basis, because true turbulence
is random in nature. Effects such as the time span over which the
prediction of the turbulent motlion is possible for given 1nitial
conditions at discrete points within a prescribed statistical
error [85] can therefore not be investigated. In order to arti-
ficially introduce a random effect into the model, one could
in addition introduce a factor in (5-29) using a random generator
and having an average value of one. The problem here consists of
determining the fluctuation with possible correlations to the
viscosities d;{ in adjacent meshes. Up to the present, the
problem has not been investigated and could not be solved within
this paper either. However, by means of an additional integration
of the energy equation, the model used here contalins an additional
degree of freedom, so that it could be assumed that the "deter-
ministic degree” is reduced somewhat. In this connection, we
should also mention the question of the effects of averaging
the kinetic energies V7ﬂ over four meshes, in order to find
the relevant value at the corner point of the four meshes. ' This
is required for calculating the viscosity }l at this location.
The model does not answer the guestion either.
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(Assumption &)

According to Assumption e) (Chapter 5.2.2.1), the constants
i;ﬂi‘ up to the present have been assumed to be equal to one. This
assumption can be restricted afterwards by determining the values
of the constants defined by (5-14, 15) from the numerical solu-
tion. After approximating &?1 by ﬂ?? and approximation of the éﬁé
squares of the deformation velocity wﬂich occur in the definitions
by (5-57), % and ¢, | were calculated. In additlon, according
to the Deardorff model, the correction factor to be introduced

(see Section A 3.5) was determined

- C -_' 1
o = < (4 "7)‘.-’_2 )3/¢>/< 4 '2')‘5‘> 3

(5-82)

The results will be reported on in Chapter 10.4.6.

2 T A e mm e o e e — — - e — — e o e ety - — — ——

. P !
In this seetion, the trial solution for <ﬁﬁxur>‘must be
explained. For the channel flow under consideration we have

. . . C ( —83)
P-‘.’ J’lr(-_‘»tg-'}‘ = o |for ty + 43| or 5
In addition we have
| |
P | i
d.xd '(41",;,’143').: Oi (5 8“)

% According to definitions in Chapter 5.2.1.

Go



Py
Therefore, only a model is required for <3¢¢u§>} . For this pur-
pose we will use a Boussinesq trial solution according to
Chapter 5.2.2.3.1.:

|

P L i

P P :
< U ' 1y = "/“ Jx; <”4/>‘ (5-85)

The turbulent viscosity jb
Prandtl mixing length model

r, = T2 /st?%)/\ (5-86)

is calculated according to the

Du =

with

(5-87)
'} . 4 2
PL "-“'_,/‘(AA(C”,O-F"L)\
and L according to the generalization of the formula of van Driesf®
[2-8]:

L= Rz [4-expf-'Re' 2/Au}]] (5-88)

The generalization consists here in the use of
! - :"_‘_ ‘ (5‘89)
Re = (Alowx C-y Recmt],f»’)‘g
where Reqrit is the eritical Reynolds number Re below which
the flow is laminar:
v,
Re T Rer\v,cfit(/<"f'>

Crit (5_90)

Pem!‘Crit’% -2/’00: /6_7

32—
Therefore {1Q1ﬁﬂ>¥satisfies the requirements b, c, @, e
according to Chapter 5.2.1, because

0 e <Cagry ) #o
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c) Cim ( (317;;)) = - ¢t lJ,,@,,s/J,‘,J 44,,)\
Ar, yd . .

)
00
e because L according
to (5-88)
; P33~ -7y =
o L (K> + 0Ty = 0|
Ax, yo0
Ax‘;-eo/ ' because (5-88)

e) for $< Re&(n‘t‘ because (5-88,89)

Cofuy g )'> = 0

The only constant which had to be determined is Cip* This
constant, according to (5-87) is apparently determined by the
fact that for é10-3F = 12 we have

or 3WJI=O
o 3

P 7,3
gy y = < 1alvy')

in other words, 1f the mesh area 3F is equal to Lz/clo, the
entire convective momentum transport occurs within the fine
structure. The mesh area F must then be large enough so that
there is no correlation between the velocities at extremely
situated points of the surface. PFrom the measurements of Comte-
Bellot [18], the area 3F in the middle of a channel in the flow
direction must approximately have the length 1.6 and the length
0.8 (dimensionless) in the azimuth direction. If according to
(2-17) we assume the value of 0.1 for L, it follows that|

_Lz..

de = "‘T'r:——"--’ 0.0 (5_91)

Of course this estimation is very inaccurate. However, there

is no other more accurate determination method available, and we
will therefore use this value in calculations. The constant can
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easlly be changed because 1t is an input variable for the program
used. The value given above has been found to be satisfactory
(see Chapter 10). 1In order to obtain the total kinetic energy
contained in the fine sftructure, for evaluation purposes of the
kinetic energy calculated according to (5-44), it is necessary

to add a part which corresponds to this inhomogeneous shear

stress contribution.

According to (2-9) we set

Prv— 4 P »
<e> = o (stm»)zll (5-92)

where a1=1 according to [91, 113] (see Table 1). This approxi-
mation also seems somewhat daring but its error is inconse-
quential for the numerical integration and during the evaluation

can also be tolerated because of

(2 L o.o4F

RIN

A0” ‘

If we add the locally isotropic part and the inhomogeneous
part, we find the following results

J ]

iy = (e (T -205) + b U -2%5)))
by CaeS Gy ¢ <> iy e | (579

-4 _8 Vol
t 3y Yy,
}

. | :

whereij given by (5-31) and A is given by (5-86); the values
S £ ‘ .

of QJE'%'Mand 'u{,’u,' are not important for the integration.

r 2 .
Because of {4 dx{yy>olwe can also write

»

4

) I
et — o 7 J"—' v A L. N .
Uy = = M (‘{’f; Y +J’ﬁ “'&‘)+ 39y %y N/ R 3:-4.‘, (j5.94)
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g = e (4 G ) ¢ ( Je3e) B¢ 24> (5ai=‘43ﬁ{<5—95)

In order for turbulence models noi to contradict the basic
equations, we must satisfy the followlng invariance require-
ments [347.

1) The modeled terms must have the same tensor and
symmetry properties as the original term;

2) They must have the correct dimensions;

3) They must be invariant with respect to the Galileo

transformation Cdﬁsplacement of the coordinate system).

Equation (5-93) satisfies (Requirement 1), because there
is a second order tenscr on both sides which 1s symmetric with
respect to the subscripts. The second requirement is apparently
also satisfied. Since only velocity differences occur on the
right side, the third requirement 1s also satisfied. This
invariance property makes 1t poasible to carry out a transfer
to cﬂlindrical coordinates, 1f the corresponding components of

the deformation velocities are subgstituted on the right side.

At first glance, it may appear questionable whether the
Inequality

J
4 ] >
‘u‘-' Y * 1,: Y

is permissible. The following will show that thils 1s indeed the

cage.
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We form the time average <1¢qﬁw of ui.uj and then take the

average over an i or a j-area:

£ ¢ R —
:('ZJ‘- u_,-} = £ U vy > = ( u, ."1-()> & <34"u_-, >
B2 Gurpy = g > <Ju

For homogeneous turbulence we have:

y ————
> - <‘l-.tv-\

A
'y -,
\N'[‘ "J il -“J,r

If the diameter of the i-surface now goes to Zero and the diameter

of the j-surface goes to Infinity, we have
— - V £ i

and .
. "u",-_> =o'\

~

Consequently we have . {‘"1,',‘_1 uid = O # <jw>:(@‘. 14_,')\

On the other hand, using the Bolfzmann axiom [119], the

1imit transition to infinitesimal measures requlres that

(— 3= |
< 1 QJ-> = < A "“"j> (AX‘(—>OJ k’-'ﬁzﬂ),l

because then both terms go to zero.

Therefore, the model used here satisfles the required

invariance conditions.
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In cylindrical coordinates, the formulas for the Reynolds
stresses averaged over the areas are given by the same formulas
as for Cartesian coordinates, 1f the tensor of the deformation
velocities 50- s d;;{};' 'ij ‘V_‘

is replaced by the corresponding one
for cylindrical coordinates [53]:

<)

250 A ke &y + ey
5 Ky e _ (5-96)
= hopt dp  2(Fdpop ) vy (F)t 3,0
- - - o
SR Fh k() 245

v--—__ 7

We will substitute the following for|the two terms -u;ﬂgliu;l

v , v . v -
oo = e [ ra(®)etgw], | oD
vi;'_'; = ”“/‘//-"‘ -2. [':7{ v?r:;‘;“' :ro;') ] (5_98)
v V__—_-;-
where M= E-h, (5-99)

The deformation velocity which determlnes the inhomogeneous
part is

J;’?’E;&_‘

The constant o is ealculated just 1like for the Cartesian mesh
using the edge lengths &%, 7T4Y, 4"'\:

The following equation is used to caleulate the kinetic
energy - E?%:
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d & X v o Yo <
S = = (0. % € - 1y (B T)- 24 (+5 % F)

*P+ &[T (FE))KE] (5-100)
e [ v e’ (P EI")2d,'F ]
+ 2 [ (vi'e (FE ) cﬁ_ﬁﬁ;l - g

"
~3
'_l

P, 5 are calculated using appropriate formulas for D2, Just
like in the case of Cartesian coordinates using Equation 5-96) #,
The constants and areas are characterized by the subscripts
X,?,fw and are calculated just like for a corresponding Cartesian
mesh with the edges 4*,‘6Y,4f! and the subscripts 1, 2, 3 are

used instead of x,f,f‘.

Slightly modified difference formulas are used for non-
equidistant meshes, and thls willl be discussed in the following
chapter. The calculation of the constants is done according to
the methods derived for Cartesian, equidistant meshes. The
characterlstic mesh edge lengths used are the average edge
lengths which apply wlth respect to the center of the mesh under
consideration. This is permissible if the mesh edge lengths wvary

only slightly.

# See Appendix 7
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6. DIFFERENCE METHODS

According to the preceding chapter, the nonlinear terms
remain undetermined during the integration of the basic equations
over the mesh volumes according to Chapter 3. They are approxi-
mated by a fine structure model. Now we must also approxlmate the
undetermined linear quantities. The result is a close system of
different formulas which can be integrated for suitable boundary

and initial conditions using a numerical method.

6.1. Linear Difference Approximation

Two types of linear quantities must be approximated:

a) Area and volume average values of velocities and
pressures which do not agree with the variables already

stored with the grid;

b) Partial derivatives of velocities (only first deriva-
tives) and we have two types:

4

b 1} Sy

(Derivative perpenducular to the
averaging area)

f
e |
x4
4 au ‘
b 2) oKy (Derivative parallel to the
! averaging area)

The guantities given by a) are approximated by arithmetic
averaging of adjacent variables known in the grid. Non-equi-
distant meshes are considered as well as the variation of the
mesh sizes with radius using appropriate weighting factors in

the case of cylindrical coordinates. The notation used 1is
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defined by
’f}}”‘ - [M+. 9 (x+Zax, )+ DX Y (X~ ZAX )J' (6-1)

The quantity bl) can be approximated without any truncation

2

error of order Ax without any problems by means of

A

3 U ~ d;ﬁ'&?;

ox, 7
because the derivative according to (3-13) is approximated by the
polint half-way between two mesh surfaces. /73

As far as b2) 1s concerned, according to the following sketch,
the derivative of a function y(x) must be determined at a point K&L-
and only the average values within the adjacent intervals of y

are known.

I | | _~
\\\\\ | ff’fsz

I8 ‘“‘-==::::===—""F=: 74
¥ %,
Ax.u, A_Xo Ax'f -
K'ﬁ O X‘& - X

If we now consider a Taylor series expansion and according to
the stationary laminar solution 1f we assume that y(x) is given

by a parabola having the form

¥y = a x2 + bx + ¢

as a first approximation {(coordinate origin x in the center of
the central mesh) then the coefficients a, b, ¢ can be calculated
for given ?-r,?o, E,,‘Las well as the derivatives 92/9"‘(‘%)" .  The
asymmetric form of y_lgis selected and not for yg‘

because the derivative 1s always calculated in pairs for X1/2 and
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ag' We then obtain the following difference approximation:

e

iL(;(le)z é;z(x-ﬁz)": a, E" + qz}-o“-o.? 3_—4

ox (6-2)
where

o, = (6 ax,-ax, +2 ax?+4ax2)/d

a, = (-6 ax., AX, - Ax°2+.24x,f ~2 Ax_f)/g’

= (2 axt - 2ax2)/of

o = (ax, rdx )(8x, rax,,) (ax_, +ax, *4x,,) |

A 4

For equidistant meshes,ékw=4ﬁ=4ﬁ=ﬂﬂwe have 17 AX1%T A%

a, = /i.e., these developments only apply for nonequidistant
meshes; however, they are important here. The author does not
know of any similar developments from the literature.

~
~3
e

6.2. Difference Formulas

Considering the "one-dimensional" geometries used, non-
equidlstant meshes are only appropriate in the radial direction.
This will be considered in the following formulas. The difference
formulas are only glven for cylindrical coordinates. The corres-
ponding formulas for Cartesian coordinates are found by substi-
tuting the value 1 for the radii r in terms in which r does not
occur in both the numerator and dencminator as a pair. In terms
where the radius r occurs more frequently in the denominator than
in the numerator, r is set egual to zero (corresponding to the

limit transition  +-eo. ).
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The veloclties which occur are area averages; the averaging
bar is therefore omitted in the feollowing. The symbol p refers
to the apparent turbulent pressure fluctuations:

€ o B, -
P= PHIT YUY, ;=423 (6-3)

6.2.1. Difference Formulas for. Momentum

The difference formulas for momentum are:

[555 ca (w46, (5730 44, (5% 50 < o] o
Lo fptaan 2455 34 i)

J{-r(/a/)o{, <vx>}J

[0 -6 B840, (W46 (T 2 57 |
= [3p]" - [J{ (Se0p+ % 80 )} 45 {2 13 dp v -E;)}
SR (F) 6] (G 3 | \

—~——t —f o~
[cft" +ofx(i'%’5— U,.-x) Jp(??';"l?r +__a.(-ruf:wf)_ 3 ]

"|

2
= [ c& , ]n=+ [ & [ (05 +3, 0, )}+._;. Jyﬁ@(ﬂ_;ﬁ (_""J_E)f--_‘-:_—ofpv_,)]
PR (2T de) -2l ';'f'acf?‘l’;vf%)]“. em

'(-\‘5?.‘.9' 4'+ T

}“s/"‘u...;)’. /u v 5,‘/M“’ f}f;;”’?/v‘da/%iw"
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The superscripts no, nl, n2 refer to time steps. For
the first time step n=1 we have no=1l, nl=2, n2=2 and for the Ak
following N time steps n = 2,3,.., N we have no=n-1, nl - n,n2 =
n+l. After N time steps the solutions at the time N+l are averaged
using a solution which is found from no=nl=N, n2 = N+1l. After
this, one starts again just like for n= 1. This so-called leapfrog-
midpoint or Jjump method has an accuracy of order At2 for the
convective ferms except for the first and last step. It has been
used many times [29, 33, 42, 79, 141], because it avoids numerical
damping in contrast to the Euler one-step method [73, 79], for
example. The absence of the numerical damping, however, can lead
to 2Atjoscillations because of the nonlinearities, which are damped
by averaging with respect to N steps. The convection terms and
the diffusion terms which result for u = const correspond to the
difference formulas of Williams [141] for equidistant meshes.
The corresponding formulas for u # const and non-equidistant
meshes have not been formulated up to the present.

It is now possible to use different formulas having a higher
degree of accuracy in time because of the difficult calculation
of the pressure and the associated enlarged storage requirement.
It does not seem to be appropriate to use more accurate difference
formulas in space, such as for example one suggested by Fromm
[41], for the turbulent flow case. Apparently the greatest errors
are produced by the fine structure model. 1In addition, the
boundary conditions become much more complicated.

The pressure required in (6-4) is in principle to be
calculated according to Chapter 1.4.2 from a Poisson equation with
inhomogeneous boundary conditions. 8ince these inhomogeneous

boundary conditions have a disturbing effeet and also the
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calculation of the source term g according to (1-26) is

laborious and it must be assumed that the velocity fleld for the
time steps no and nl exactly satisfies the continuity equation (547,
or that errors in the adherence to the continuity equation can
increase from one time step to another, we will therefore not

first calculate the pressure p itself. Instead we will calcu-

late an auxiliary potential 14 which will remove all | these
deficiencies. The method used here was suggested by Chorin [21],
and was used by Amsden-Harlow [3]. Compared with the method used
by Deardorff, Williams, ete. [29, 141, 54], this represents an
improvement so far as accuracy and simpliecity are concerned.
Compared with the methods suggested in [3, 371, it becomes possible
to calculate the pressure directly without solving an additional

Pcisson equation.

S~
-3
R

| ~h2
First of all a velocity field ¥ | for a new polint in time

is calculated using formulas|(6-4) but without considering the
pressure. The velocity component perpendicular to the wall is
set equal to zero for the new time step corresponding to the exact

wall conditions (1-5):

e 8 -0 (6-5)

-4

nt/
This velocity field EE ; 1s,0f course, not the correct one,
because the pressure was not considered. However, because of

the omitted pressure terms, this solution can only differ by

the gradient of a potential from the correct solution Hég.

Therefore, we set

W e T - grad v | (6-6)

.

R

Eere Yf ig an auxiliary potential and grad is the difference

form of the gradient operator:

mx- { G, Adp, 8] (61
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The direct velocity field En2 must satisfy the continuity equation
(1-8)
R O P R o\ (6-8)

The potential Tﬁ is therefore the solutlion of the following

Polsson eguation [ ne ‘

oev grad 4 = OV U (6-9)

Because of (6-5) we have the homogeneous Neumann boundary condi-

tions

Sev =0fual1 (6-10)

This system of equations can be directly solved using the
series expansion described in Section 4 and using the fast
Fourier transformation (FFT) in a very effective manner. Then
the velocity fields will satisfy the continuity equation after
every time step up to a numerical roundlng error. This 1s also
true if the initial condition does not satisfy the continuity
equation. Corrections suggested by Hirt-Harlow [56] and used in
[29, 141], are superfluous here. In the following we will /17

show that the pressure p can be simply calculated as follows
without any additional solution of a special Poisgson eguation:

Y | For all meshes inside (6-11)
P = Tni-no) At of the flow space

|

4 A* Bﬂw

IVJ

(+for r = Rl; -for r = R2)

Here aahgfjwalln 15 the radial acceleration at the wall which isl
obtained when the pressure 1s not con81dered.~yywalﬂ|1s the value of|

the auxiliary potential at the mesh adjacent to the wall. For

proof of this, we consider the equation for determining the
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pressure, which is given as follows according to (1-19) in

difference form;

odiv grad ¢ = oliv %%.

with the boundary condition (6-13)
|
= 3?54/ 6-14)
g““fo" ¢ Jwalll: (
Because of div ‘y_“‘l—oJ , we have
olé v = (a*ﬂ) (6-15)
(uz no)At

for all meshes which are not adjacent to the wall. On the

other hand for the wall meshesdivﬁf?does not obtain the contri-
bution to the divergence which 1s a consequence of Bahgfp because
according to (6-5) QE?* was set equal to the value which was a
consequence of the wall condition. Therefore in this case we

have
na

(6-16)

+ 0"*"{"1 ! 3 wal]j

. aiz = ad (%ﬁf z

d‘v(at ) (h2-no ) At -

and in the second divergence operator the fleld values located
in the interior of the flow are all equal to zeroc. If we now
form the divergence of (6-14) in a corresponding way and if we

subtract this from {(6-13, 16), we find:

> . ~ N2
cev ﬁi‘do’ (-f?”)ﬂ (o2 no) A oAy U (6-17)
d; lwalll e k (6—18)

With P; =P inside of all the meshes and

- A ﬁﬁi{ at the walls. 6-1
P17 P HNEST waij ( 9

Because of the similiarty of the Eguations (6-17,18) and
(6—9, 10) and the linearity of the operator div grad, we find the
result which has to be proved (6-11, 12). See Chapter 7.7 for
the calculation of af;/%#waiﬂ .
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In the numerical integration of the energy Eguation (5-44, 100)
we must determine that the energy Yz | 1s always larger {or equal / 78
for laminar flow) than zero. For this reason we will integrate
over time using the single step method. The convective terms
are calculated with so-called "upwind", "down stream" or "corner
cell" difference Formulas [49, 57, 72, 73, 1231:

' u tx-Fax) = yx)- gx-ax1) . X) >0
""d:;? = [ (g g ) e (6-20)
4 A

« (Xf:dx)z; (67()“4;‘)#.3(,\-)) ; wix) Lo |
These formulas insure that the new value of y at the next time step
will not be negative if only the convection is considered, unless
the initial field is non-negative everywhere [1231. As linear
stability analysis can show (see Section 6), it 1s not permissible
to use the jump method for the time 1ntegration here because 1t

would always be unstable. Therefore we will use the Euler method

here,

Negative values of the energy field can occur under some
conditions if the energy dissipation was calculated accordlng
to

i :&—,)"* +A-t-( ..... - % ‘ET}”‘)'\ (6-21)

and the dots stand for all terms besides the sink term. Since

the analytical solution of

2=-0 g

gi)
(1+ £(+4) [;({,}]”‘)f ’ | (6-23)

(6-22)

ig given by

y({)=

106



we integrate as follows here:

)

(E')"z _ + ot (o )I (6oni)

i (1+ C-}'Lﬁi (n2-ha) [( ’é"‘)"‘]'")z

If we obtain a negative value of ?T(in spite of these precautions,

then this will be due to instabilities caused by steps which are

too large for the integration of the energy diffusion terms.

In such cases, the time step At 1s reduced.

§.3. Accuracy and Stability of the Difference Formulas

l\
—~1
O

In Section 5 we will discuss several aspects of the accuracy

of the difference formulas.

Among these we have:

a)
b)

c)
d)

3)

Statistical errors of the linear difference approxima-
tions;

Truncation errors;

Allasing errors;

Agreement of the difference formulas with the physical]
conservation laws which follow from the integrals of the
differential equations

Numerical errors

The most important results are the following:

a)

The deterministic linear difference approximations are
only correct for the statistical average and for suffi-
ciently smooth averaged fields. The instantaneous

deviations from the statistical average have a standard
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% o
deviation which is proportional to <8¥2qu

and there-
fore becomes smaller only as the dissipation <e> and the
mesh edge length Ax are decreased. It is likely that

the deterministic approximations-can be replaced by a
statistical method which can be determined guantitatively,
but this was not done. The area averaging results 1n a
reduction 1n the error by only a factor of three compared

with the consideration of point velocities.

b) The truncation errors«aﬂthe difference formulas have
the order of sz for position and are of order &tz in
time for the convectlve terms. Phase errors can be
ignored because of the small energy contribution of the
short wave Fourler components of the solution. The
effect of "false diffusion"” will be discussed but does
not geem to be important either.

¢) The aliasing effect will be discussed. This error can
lead to instabilities, but they are controlled in fthe
congervation propertles which will be discussed in the

following.

S~

d) The difference formulas must satisfy the conditlon that
if there are no source and sink terms, the time changes
of momentum and kinetiec energy integrated over the
entire flow space must vanish. The same conditions
apply for the differential equaftion. This condition
is satisfied by the difference formulas used here.

e) The reasons for the production of numerical errors have
been demonstrated. Rules will be given which, if followed,
make 1t possible tc avold these errors, especially when

extensive sums are formed.
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As discussed in detail in Appendix 6, stability criteria
will be investigated. First of all the permissible time steps
are determined for the linearized difference formulas in their
three-dimensional form for cylindrical coordinates using the
Neumann criterion [111]. Three types of difference formulas
are investigated. The first one corresponds to the formulas
for the momentum calculation and the second one corresponds to
the energy @5% calculation. As the third type we will investi-
gate often suggested difference formulas which correspond to the
first type except for the approximation of the diffusion terms,
which are calculated according to DuFort-Frankel. The following

results are obtained (see Appendix 6):

a) The permissible time step At (except for the second

' type) can only be given in an explicit algebraic form
for the limiting cases of pure convection and pure
diffusion. In the first case we have dt~“ﬁgi and in
the second case &t~ ;‘E For the third type At is |

arbitrarily large for stability and for pure diffusion.

b) TFor the general case of mixed convection and diffusion,
the permissible time step At 1s determined numerically.

Comparisons do not yet exist in the literature.

e¢) The permissible time step At can be much smaller than
the minimum of the tlme steps which result for the
limiting cases. A formula is given according fo which
a conservative time step can be easlly determined

algebraically.
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d) When the Du Fort-Frankel form is used for small /81
viscosities, one is led to smaller permissible time
steps than those used here for multi-dimensional problems.

From the result a) and according to the turbulent viscosity
which varies according to (5-69) it follows that at high Reynolds
numbers the permissible time step is always proportional to the

mesh edge length Ax.

In addition, in Appendix 6 we will discuss the method of
Hirt [57] for investigating the influence of nonlinearities on
the stability. It will be shown that this method is not practical

here.

Finally we would like to state why we do not use an implicit
method [U44, 111] to avold instabilities. The reasons are as

follows:

a) The numerical cost for solving the large, nonllnear
systems of equations which are produced would be very
high;

b) The inereased numerical effort could not be compensated
for by a larger time step At, because the inaccuraciesJ
especially regarding the nonlinear convectlon terms,
would become much too large. For example, note fhe
effect of the time step on the fine structure model

according to Chapter 5.2.2.5.1.

¢) The permissible time step 1s sufficiently large because
AL ~AX.
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7. BOUNDARY CONDITIONS

/82

In this chapter we will give the boundary conditions for infte-

grating the difference equations. Periodic boundary conditions
are assumed in the azimuthal and axial directions. The period|
lengths are selected according to experimental results. There
are wall conditions in the radial direction. For this the basic
equations are integrated over the wall meshes and the strongly
varying profiles as well as wall roughnesses are considered by

means of logarithmic wall laws.

7.1. Periodiclty Condition

The basic equations are elliptical as far as space 1s con-
cerned and therefore reguire boundary conditions as all surfaces
of the flow field being considered. Such boundary conditions
must be introduced artificially in the axial direction and, for
plate channels (or annulus channels with radii ratios R2/R1
close to 1) in the azimuth direction. This is because the
numerically simulated flow space cannot be selected as large as
desired for specified mesh sizes. According to convention [29,

83, 947 periodic boundary conditions are used here:

: . - , R
Cartesian }f (x, + 4.){; ;X U-}g ’ ,yg): ?cx#’xz'xi) l

' oo T (7-1)
o,y = 0’_*4‘ .fZ’...

Cylindri 1J
ylindrica ‘y(xfiX,‘f*J'ﬁaT) = ;(x,ﬁ"‘)

These boundary conditions would be exactly correct if §=:2ﬂ4
and the channel were a torus wlth the circumference length X. -
In all other cases, this boundary condifion dcoes noct have a
physical reality. In the first approximation, the periodiec
boundary condition can be Justified as follows, for example

in the axial direction. If the flow fields y in the axial
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direction are only correlated over a length of X/2, i.e.,

|
(‘J(X_fi,‘ﬂ*-";("n‘fﬁ)/\} equals zero for #pX{Z| , then for z>X/zE one
can prescribe any arbiltrary boundary condlition without influencing
g xR/

perlod101ty From the measurements of Comte-Bellot [18] for plate

, and therefore, for example, one can also require

flow, it is evident that the correlation length defined above
corresponds to about 1.6 times the plate distance 1n the axial
direction and about 0.8 times the plate distance in the direction
perpendicular to the flow direction. Therefore, we selected éﬁi

the following period length:

=4, X
K= 27 Re/R2 & 02

(7-2)
=¥, @ - {2/&4 Re/RZ > 02|

The values used by Deardorff [29],X1=3, X,= 0.7,seemed to be

too small based on the measurement results discussed above.

7.2. Exact Wall Condition and Galileo Transformation

The exact wall condition {(1-5) is wvalid at the walls. Since
only the reference area of the radial velocity component lies on
the wall surface, the exact wall conditlions can be simulated here

without any problems:
ol = %) =0 _
N O (7-3)

For the two other components, additional approximations
of (1-5) are necessary. For this see the following sections.
In order to improve the stability properties and to reduce the
numerical inaccuracies, when differences are formed, we carriled
out a Galileo transformation., It is assumed that the coordinate
system is not at rest but itself moves at the velocity VG,
whieh corresponds approximately to the average axial velocity
with which the flow is moving in the axlal direction. In this

way the basic equations are not changed. However, now the
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wall condition for the axial velocity component becomes [29]

ulfiwalﬂ= Py [walll = - vg (7-4)
|

ay

7.3. Wall Condition for the Axial Velocity Component 'x}

One must start with the momentum conservation equation
{3-15) averaged over the mesh volumes in the exact form. If we
considered a wall mesh, then the approximation of the caonvective
terms does not cause any problems because of ﬁaJWQﬁll . However,

this 1s not true for the diffusion terms. Here the term

4 J{r v (30» aw)}l

must be considered separately. For a wall mesh along the éﬁ&
inner wall at r=r1 we have:
{-r 3 (S + = [v 3"*)] R1 T,

T4, T3, % “ ) 1(7-5)

with the wall shear stress

o | |
T, = V¥ ”a"-?".] (7-6)

VA

The terms can be approximated at x"r%g)gust llke in the

interior of the flow. However, we cannot set 1;,,_?%;_* because
2 /
the velocity profile varies too much in the V101n1ty of the wall.

* ‘Ukl is the wvalue of ﬁ;\ in the wall mesh at n = 1 according
to Figure 5.
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Instead, we will set:

= F.3 -
Wi A k'Ux ,,)

(7-7)

If we approximately assume, as is done in general [29, 1201,
the following logarithmic profile for the average velocity in the
vicinity of the wall:

< ot = -(_Ti_ﬁ g,, [(-T—RA)EAJ"

where k 1s the Karman constant and El is the wall roughness along

the inner wall, we have
2

and therefore

_ "
Tw = K'U' A . < ij>

v (el g )

If we consider the Galileo transformation (7~4), then we
have the following complete form

4 i

’C’WA = ( ’sﬁ;(l 1V€)(&4[H4£4]—J) < L’W‘)

(7-9)

For plate flow with the same wall roughness at both walls
we can calculate <j?gu)] from a simple force equilibrium as

follows:

<’E—w $:<ZWL> = PX(RK-RA) = A

o 2 (7-10)

TIn all other cases it is necessary to determine the average

wall shear stress during the integration. See Chapter 7.5 for
this.
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For the constants k, El’ E2, Deardorff [29] used the follow-

ing values referring to the measurements of Laufer [76]:

4

k=0.4; E. = E2 = 8.8-10

1 (7-11) /85

—_—

If we calculate the average velocity prcefile using the Prandtl
mixing length model (2-5) with the mixing length L according to
(2-8), then we obtain the same profille for‘large distances from
the wall if the constant used in (2-8) is set equal to Aw = 4,
AW and E1,2 are therefore constants which both consider the wall
roughness and cannot be selected independently. The value AW=H

will therefore also be used in (5-88).

v
7.4, Wall Condition for the Azimuth Velocity Component . ?!

For the component %?/walljhe essentially have the same formulasg|
as for the axial component. However, since in this case the

average veloclty 1s always zero, we set:

-f

' 2 /Y5,
v or 5% (5E) = (;“A”) R1 &, ?&)-1 (7-12)

Therefore we assume a linear variation of Cgﬂf and the error
fhereby produced is somewhat corrected by considering the turbulent

viscogslty r., which is the result of The fine structure model.

Y

7.5. Calculation of the Average Wall Shear Stresses

As already mentloned in Chapter 7.3, the average wall
shear stresses ('c‘w‘),( E‘,,,,}!can only he calculated for plate flows
with the same wall roughnesses of both walls from a force
balance and by considering the symmetry. In all other cases
it is necessary to calculate<fu§;<ﬁﬁﬂ from the numerical solution
itself. Following we will discuss the computation procedure for

the inner wall. For statlonary turbulence, we obtain the time
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average from a force balance on the ring of wall meshes,

according to the following diagram

<TM>=<7H»%%
][T&ﬂ} P y2- RA: (7-13)

X ARA

N
3

>

-

fly
::e*.p‘

~
<0
o

|

The wall shear stress cah be calculated from a force

is khnown

balance if the average shear stress variation (tud

in the interior. This is calculated from
P, w2t £ . Pre ~ P (7-14)
<T@y = - X T ) +/4Jj¢<vx>+</“¢ff & -(v,)))

At the beginning of the integratlion the wall shear stress is
specified per input and 1t is again recalculated when the
stationary solutlion is obtained according to the formulas given
above. This process is then repeated affer the Inftegration time
until the wall shear stresses no longer change. Instead of the
time average value we use tThe periodic average value as an approxi-
mation, which does not produce any error for sufficiently large
period lengths #

*¥ However, see Chapter 10.4.7.
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7.6. Wall Condition for the Kinetie Energy &' -

A1l the veloeity fluctuations vanish at the wall and
therefore the fluctuation motlon energy is also zero there.
This wall condition can be considered in an exact way for the
convective terms. For the diffusion terms it is necessary to
know the gradient ‘gyﬁzﬁgllg. Tt does not make sense to calcu-
late this gradient from _é.;e’:ji? /Wall="EL [{avt, 12) !because . % nas
a maximum very close to the wall, as experiments [18, 76] have

shown. Therefore we set

9 ¥ - V-
S lyarm o B,/ (s10) ] (7-15)

For thege calculations, we will use ¢ = 0.2

< 1
|- 11

where 0& ¢ ¢
in this paper.

When the source term is calculated for the energy equation,
i1t is necessary to calculate the squares of velocity deformations,
and at the wall the radial gradient of the deviatlion of the
velocities from its periodlc average value must be known. Here

we will use linear gradient approximations.

7.7. Wall Condition for the Pressure

-

According to (6-12) 1t is necessary to know 'BgiﬁqﬂWall,
and this is the area average value of the radial acceleratlion
of the wall which would be obtained 1f the pressure were not
considered. If we consider the momentum eguation of this com- Zﬁl
ponent for such a mesh area element which cccurs at the wall,
it can be seen that because of the wall adhesion condition, all

terms vanish except for the padial diffusion fterm:

f
o 4 3 + ) 20 , |
ot lwallf 3 ('r“*/“) v /lya1al (7-16)
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From the continuity equation (1-8) it follows that]
My _ Uy (7-17)
~

dfp _ 20
BT ??? 3;F

SN

A1l of these terms vanish at the wall, but not their radial
derlvative. For calculating it we use the average values over

the wall mesh which are avallable, and we find:

— Py o _
E...E?i = _QM vf'% -+ qu)g[_(, If_ J 21')— (7—18)
7 a1y, > et Rt R e

A similar relationship is obtained for the other wall.

8. INITIAL CONDITIONS

The initial conditions must be prescribed for the velocity
fields u and the kinetic energy field ﬁ;‘\of the fine sftructure.
In order to be effectlive, these must be prescribed so that they
already correspond to the stationary model in the statistical

gense as far as possible.

8.1. Initial Values of the Veloeity Field

The direct simulation of turbulent flows is based on the
hypothesis that the initial values in principle deo not have any
influence on the statistical properties of the solution when it

has reached a statistically stationary state [20]%. In order to

make the computation time small up to the point where this
stationary state is reached, initial wvalues will be selected

I\
o
(o3}

which already correspond to the stationary state as much as possible.

¥ This hypothesis can be seen to be valid beéause according to
Chapter 10, the same results are obtained for various grid

sizes.
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The following requirements are placed on the initial values:

- Fulfillment of the boundary conditions;

~ Agreement of the average velocitles with corresponding
experimental data;

- Agreement of the average kinetiec energies with the
corresponding measurement data;

- Reasonable energy spectrum which agrees with the Kolmogorov
spectrum (4-4) at high wave numbers;

- The incompressibility condition is satisfied.

In order to satisfy the flrst two requirements, the average
velocity profile is specified according to measurements of
Laufer [767.

The velocity fluctuations around these average values are
calculated from the vector potential.{&g!&g}’[2, 121] in order to

observe the 1incompressibility condition:
T.= &, Pot
Uy = Z 4 ‘

_ sy
B, = -2 P-4 by (Pete) <)
It can easily be seen that the veloclty field determined in

(8-1)

this way satisfies the continuity equation for all meshes and for

arbitrary potentials (Pot Potg).

1’
In order to produce a velocity field with a reasonable
energy distribution, the potentials (Potl, Potg) are designed by
using a random number generator with a given fluctuation width
in such a way that the kinetie energy on the average will
correspond to the measurements of Comte-Bellot [18] for the three
velocity components. In order to produce a Kolmogorov spectrum
we use ah algorithm which starts with a randomly determined pre-

scribed value at the walls and at the center and which determines
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the potential values first at the point which is half-way between
the meshes with already specified potential values, so that the
resulting velocities are correlated with the neighboring values

2/3

in proportion to r and where r» 1s the distance between the two

reference meshes. According to (4-5), this correlation corresponds

k_5/3

to the variation of the Kolmogorov spectrum. Figure 16
shows such a randomly produced velocity field in the correspond-
ing energy spectrum for the axial wave numbers. The agreement
with the Kolmogorov spectrum is satisfactory even though the
produced velocity fleld may seem somewhat too random. This is
based on the calculation of the veloccities by differentiation of

the potentials according to (8-1).

The method used here only has za heuristic basls. Fox-
Deardorff [44] indicate a method briefly for which the energy
spectrum is enclosed on the initial values in a mathematically
justifiable way by specifying the Fourler transform of the
velocity fileld., However, this methed cannct be used for

cylindrical ccoordinates.

P e
8.2. 1Initial Values of the Kinetie Energy &

The kinetic energy of the fluctuation velocifies 1nside of
the meshes is determined from the veleccity field in such a way
that if the convection and diffusion terms are ignored, they willl
correspond to the stationary solution of (5-L4}):

d E' Vo 42“_ c V= 1& .l_ (8-2)
3L = C4( LI D2 (f— ) T} ( E) =0
V- | -
N E' - g‘: hl Dl (8-3)
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9. THE PROGEAM —TURBIT-1

|

The numerical simulation of turbulent flows requlres an
optimal programming technique because of the extensive amounts of
data and large calculation times. The programs used here are
mostly programmed in FORTRAN. Assembler programs are used for
dynamic core storage use and in order to determine the permissible
computation time. This is done so that,|if the time 1imit is
exceeded, all of the solutions calculated up to that point can
be saved on background storage units. A dynamic data management
system 1s used as one of the bases of the program. For this, the
required data fields are divided into blocks, except for the
auxiliary potential . A block includes all the values of a
variable in the same plane parallel to the walls. A subprogram
package [126] manages these blocks. Blocks not required at
some time are automatlcally stored on direct access storage units
if the core storage space 1s not sufficient. By correspcnding
programming, 1t is possible to have a readout or read-ln of one
block a maximum of once per time step. Using the assembler
subprograms, one is insured that the available core storage is
used in the optimal way. A maximum of 34 blocks must fit into
the core storage unit at the same time independent of the number
of meshes in the radial direction. The subprogram package is
so effective that the costs of the caleculation take on thelr
minimum when the core storage unit 1s selected sc small that
this minimum number of blocks fits into the core storage unif.
The program, therefore, requires a 820 K Byte core storage unit
for problems with 6U4%32 meshes for a plane parallel to the walls
as well as 32 meshes in the radial direction (without overlay
for the program Modulus). Of these, about 260 K are reserved
for the auxiliary potential ¥; approximately 200 K are reserved
for the program instructions. About 30 K are reserved for an
input/output buffer. On the IBM 370/165 in Karlsruhe, the
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available core storage space 1s about 1500 K Byte and there-
fore problems having 64¥64#%¥32 meshes can be calculated. It would
be possible to reduce the core storage requirement by dividing

i

the auxiliary potential v into data blocks and solving the Polsson

equation using the transposition method described in [125,128].

In order to avold unnecessary calculation operations, all of
the expressions which remain unchanged during the calculation
are calculated once at the beginning of a calculation. This type
of optimization cannot be assigned to an optimizing translator,

because 1t cannot optimize over several subprograms.

In addition, multiple subscripts are avoided and instead the /91
required complicated linear subscripts are calculated without
multiplications. In order to minimize the number of sgquare
root operations, we do not store the kinetic energy iﬁ_ but
(ﬂ?}Q)instead.

In order to check the calculations and in order to present the
results, we use subprograms [84, 124] for graphical output of the
scalapr and vector flelds in the form of helght lines and vector
fields. These are especially suited for cylindrical and other
curvilinear coordinates. The average quantities as a function
of radius or wall disfance are produced using the program
GRAPHIC [39].

One major problem consists of demonstrating that the programs
do not have any errors. There are no test problems having analytl-.
cal or known numerical solutions for the geometries considered,
for which all of the terms in the equations being integrated
do not appear in a non-trivial way. The test problems used are
laminar flows. See Appendix 8 for this. The solutions for turbu-

lent flows can only be tested using experimental results. For this
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see the following chapter.
The program built has been named TURBIT-1, TURBIT is the

abbreviation for TURBulenter Impuls Transport, (Turbulent momentum

transport)

10. NUMERICAL RESULTS

10.1 Speclfications of the Calculated Cases

Two different physical problems are treated: & plate channel
and an annulus channel with the radius ratio R2/R1=5. Both
problems are characterized by K (Cartesian) or Z (Cylindrical).
For each problem case, we consider four different cases X1,

K2, K3, K4 and 21, 22, Z3, Z4, respectively, which differ re-
gcarding the size and shape of the difference grid as well as

the period length. X1, Z1 are the cases with the smallest mesh
number; K4, Z4 are the cases with the largest mesh number. Tables
12 and 13 contain the exact data for specifying the 8 cases.
Non-equidistant meshes are used for cases K4, Z4 in the radial

direction:
nlt 2 3 4 5 6 7 8 9 1lo 11 12 13 14 15 16
32 31 B0 29 28 27 26 25 24 23 22 21 20 19 18 17

ax, R E | l I I
AT [0.018 0,02 0.022 0.027 0.033 0.038 o.0do o.042

In the other cases we use equidistant meshes. It should be
noted that the number of meshes in cases K4, ZU4 1s 65536 which
is substantially larger than the number 6720 used by Deardorff
[29] and the 32,000 meshes used in [33]. These numbers do not
represent the upper programming limit, which is given only by

the avalilable or the sensible computation time. As Figure 12
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shows, the computation times (Figure 4) are already so large that
a further increase in the number of meshes does not seem to be
defensible.

In the cases K1-K3, Z1-Z3 we started with random initial
values according to Chapter 8. TFor the cases K4, Z4, the initial
values are obtained by interpolation from the sclutions deter-
mined in K3, Z3. In this context, the integrated time steps
as well as the machine computation times given for Kh, Z4, con-
sist of the sum of the values given for K3, Z3 and for K4, Z4

alone.

Table 14 shows the calculation time required per time step.
Integration of the ZET\ fine structure energy requires on the
average of 33% of the computation time. The velocities without
pressure correction require 57% and the calculation of the
auxiliary potential 1V; or of the pressure p requires only 10%

of the computation time per time step.

10.2. Qualitative Description and Evaluation of the Results /93

Figure 17 to 20 give an impression of the effort reguired
for the direct numerical simulation of a turbulent flow, as well
as the results. These figures show three-dimensional "instanta-
neous photographs" of the flow fields 1n the form of vector and
contour graphs. Each of them corresponds tolan arbitrarily
selected plane of the flow space. Only the fluctuation field

gﬂs g.ﬁ;u)iof the velocities is represented. The velocity com-
ponents 1n the plane of the drawing are characterized by vectors
which start at the point under consideration and which have a

length and direction corresponding to the velocity vector. The
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fluctuation veloclty perpendicular to the plane of the drawing
is characterized by contours having a constant contour value
difference. In thils way we obtain a good plastic representation
of the flow processes. In addition, Figures 18, 19 and 20 show
the contour representations of the fine structure energy %?{

as well as the pressure p defined by (6-3). The contours
corresponding to negative function values are given by dashed
lines and those corresponding to positive values are given by
solid lines. The latter also had markings for identification

of the height using the legend given. These figures have
markings at the edges which characterize the separations between
meshes. For the solid ring figures, these markings are partly
inside of the flow space (for example, Figure 17). Here one can
¢clearly see the non;equidistant radial mesh separations as well

as how the periodic boundary conditions are satisfied.

The most important results shown by the figures is the
fact that the flow flelds presented are indeed as irregular
as one imagines turbulent flows to be. This fact 1s an
important argument for the fact that the program used does not
have any errors. As is well known,many program errors lead to
some kind of regular features whlch cannot be explained
physically. The systematic phenomens which are shown are
exactly those one would expect from the physics of the problemn.
Everywhere one can see that in the vicinity of the wall, the
greatest fluctuation motions ceccur. This 1s exactly where the
kinetic energy production is great because of the large
velocity gradient. Because of the large velocity fluctuations,
the &?? values are a maximum and the pressures have extreme
values. The fine structure tips shown clearly in Figure 19
which are perpendicular to the flow direction and go from the
wall to the center are very interesting. This could be one of
the often observed intermittence processes [89,115, 120], for
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which the flow is relatively quief over large regions and the
stored energy is transported in pulses from the wall to the
center now and then. The figures for the problems with many
methods are too confused to be able to follow the motions

in detail. Figure 20 for case Z1 is probably better sulted for
this.

Figure 21 shows the flow behavior as a function of time at]
a location r=0.84L4, where according to Figure 44 the average shear
stress (ﬁa;-@k’>! is positive. The velocity components as well as
the macroscopic energy calculated from it are shown, as well as
the instantaneocus product V4« Vx {and the fine structure energy'iﬁg
starting at t=0, where random initial conditions prevall up to
t ®# 5. In real dimensions, this dimensionless time at B = 18 cm,
Re = 240 000 und Gb = 0.80 m/s corresponds to about one second
éccording to [18] in real time. Perhaps one would have expected
a motlon which fluctuateg more here. However, one should con-
sider the fact that because of the space averaglng over |
individual meshes, the time functions are also smoothed. From
this figure one can see that the flow apparently does not move
towards a true stationary solution (as is the case for laminar
flow). In addition it can be seen that after some time, the
"Reynolds stress" vavafi does indeed become mainly positive.

From the time functicons gilven, we caleculated the energy
spectra and show this on the lower right of Figure 21. Because
there 1s no perlodicity here at large frequencies {(recalculated
here for dimensionless wave numbers ) an apparently large con-
tribution of the Aliasing error is produced [50, 9]. The spectra
of the space functions ”&l*ﬁﬂgfﬁ,l&lxﬂ also shown do not have
such errors, because these functions are periodle according to

the model. Nevertheless, both types of spectra have similarities
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of the type so that in the center there is a reglon correspond-
ing to k_5/3 which drops off in proportion to k_7 at the high
wave numbers. This is clearly also shown for the spectra
corresponding to cases K4, Z3 (Figure 22) where in the axial
direction it is possible to represent more meshes and therefore

more wave numbers.

The statistical properties of a flow should move towards a
statlonary state independent of the instantaneous space photo-
graphs or the unsteady variations at a polnt. In Chapter 10.4.1
we will discuss whether or not this state is indeed reached.

In the stationary state, when there is a large number of meshes
in the ><~“f=':hl ir X =X,
should be able to be replaced by periodic averaging over these

-X planes, respectively, the time averaging
planes. Thils assumption was always made for the evaluation of

the results. However, under the given conditions (not

completely stationary, only a small number of points) this did not
actually happen and therefore the period average values shown

in Figures 26 to 64 show large fluctuations. The replacement of
period averaging by time averaging alone i1s not practical. For
example, Figure 65 shows the velocities at a location as a .
function of time for the case K3. 1In order to produce this curve,
the computation time is 2 hours on an IBM 370/165. Apparently this
computation time is not sufficient to obtain average values

with sufficiently small fluctuation widths. The combination of
both types of averaging seems desirable. For this, all of the
evaluations would have to take place simultaneously with the
integration, because 1t 1s almost impossible to have intermediate
storage of the data for later evaluation for the cases with 65,000
meshes. It should be remembered that the values of the three

velocity components plus the fine structure energy require
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10~ Byte of storage per time step. A magnetlec tape contains about
107 Byte.

In Figures 43 and 44 we show the shear stresses as a function
of radius (or wall distance) for one plate channel and one annulus
channel each. Only the shaded region can be attributed to the fine
structure model according to Chapter 5.2.3.1. Therefore, we can
see the favorable result that most of the momentum transport is
brought about by the macroscopic structure. The method used here
simulates the turbulent momentum transport primarily by direct

integration of the Navier-Stokes equations.

Figures 38 and 35 show the kinetic energy of the solutions
coded according fto the calculation methods. The ccntribution
between a zero line and the filrst curve corresponds to the fine
structure energy ﬁ?{ according to Chapter 5.2.2. The next region
was caleculated acéording to (5-92) and differs only slightly
from zero. The region above it finally is the energy contribution
produced by the macroscopic structure. This energy contribution ggg
apparently is not much greater than the contribution of the fine
structure. The models used for this are therefore not negligible

for the local processes.

In the following chapters we will discuss some of the
individual results which will support the physical plausibility
of the method. In particular we will make clear that even
relatively coarse solutions give reasonable results for cases
K2, Z2. This means that the greater amount of effort for the
finer resolution corresponding to cases K4, Z4 is not absolutely

necessary for future problems.
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10.3. Quantitative Comparison with Experiments

In the following we will compare the calculated maximum of

the average velocity profile Q{%& :with corresponding data

max
from the literature. See Table 15 for this.

The agreement between the calculated values and the measured
values lies/within the experimental measurement errors for the

corresponding Reynolds numbers.

For the annulus, Barthels [11] and Maubach [88] predict a
reduction of the maximum velocity by 1-2% compared with plate
flow. The values calculated here lie between 0-10% under those
for plate flow. This means that the tendency is represented

correctly.

Figure 26 shows the velocity profile calculated for plate
flow. The measured values reported by Comte-Bellot [18] and
Laufer [76] are shown by daghed lines. The differences between
the measured values and numerical results can hardly be
distinguished. The profiles for the annulus flow according to
Figure 27 show the expected displacements of the maxima towards the
inner edge. The difference between a maximum and average
velocity is a better measure for the agreement between the calcu-
lated and measured profiles than is the graphical representation

of the profile. Corresponding numbers are given in Table 16.

It can be seen that the calculated values agree well with
the measured values. We can clearly see an improvement of the

results compared with those of Deardorff. This is probably due to
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the division of the fine structure model into a loeally 1lsotropie /97
part and an inhomogeneous part (Chapter 5.2.1).

10.3.3. PFluctuation Velocities

In Pigures 28-30 we show the average velocity fluctuations

ﬁ«;qﬁl)athfor the wvarilous components for plate flow. Correspond-
ing results are shown in Figures 31-33 for the annulus. For plate
flow, we also show the measured values of Comte-Bellot (dashed
lines) for comparison purposes. The agreement of the average
values can be considered good. The numerical values do not

have as large a variatlion with wall disftance as do the experimental
values. This is partly dué to the fact that the fine structure
energy was assigned uniformly to the varlous components correspond-
ing to the assumption of local isotropy. In any case, these
results are much better than those of Deardorff [29]. There the
contributions of the fluctuation velocities were all higher than
was the case for the measurements. In the vicinity of the wall,
maxima of 5 were indicated for the axial velocity fluctuations.
This is about twlce as high as the corresponding value measured

by Comte-Bellot [18]. Here again we had better agreement because
of the separaftion into a local isotropic and an inhomogeneous

fine structure model.

Figures 31-33 show that (except for Z4) the fluctuation
veloclities for annulus flow are smaller at the inner edge than
at the outer edge. This corresponds to the physical realities
because fior R1/R2+0, i.e. for a circular tube, the fluctuation
intensity has a minimum at the center, just like a plate. The
deviation for Z4 is attributed to insufficient stationary condi-
tions (see Chapter 10.4.1),.
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The two-point correlations of the axial velocity components
in the axial direction were calculated and are compared with
the measured values of Comte-Bellot [18] in Figure 36 for x3=0.5
(center) and in Figure 37 for x3=0.031 (vieinity of the wall).
The agreement of the numerical values is satisfactory within the /98
framework of the statistical scatter for cases K2-K4 for which
the period length 1s 4. Corresponding correlations for the other
velocity components are shown in Figure 38 for X3=O.5. Compari-
son measurements are not known for this case. The correlation
curves clearly verify the result found by Deardorff [29] accord-
ing to which the axial component is correlated over a larger
axial interval than the two other components. This result had
been found before Deardorff by Comte-Bellot [18] by determining
the correlation lengths from spectrum measurements. These
correlation lengths are shown in Figures 39 to 41 for the plate
channels. The dashed curve corresponds to the measurements of
Comte-Bellot. Here again we can consider the agreement to be
satisfactory. Figure 42 shows the corresponding results for

an annulus, but without any experimental comparison.

10.4. Influence of the Model Parameter

It is not easy to decide whether the solutions discussed here
can be considered stationary in the statistical sense. The period
average values have large fluctuations after a relatively long
integration time. This is especilally clearly seen in Figures I
and 46 in which the period average values of the accelerations
are shown. If we remember that the pressure gradient can only
produce an acceleration having the magnitude 2, then the
fluetuations of the average accelerations are remarkably large.
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This is also true for cases Z1 and Z2, where according to (1-41)
the required "start-up time" has greatly been exceeded. It is
only from the systematic variations of the accelerations for
cases K4, ZY that one can conclude that the stationary state

has not been reached at least for this case., A better measure
for closeness to the stationary state is the variation in time

of the macroscopic energy V('g") and the fine structure energy
2%?} (¢} averaged‘over the entire flow volume at a point in
time. For cases K1 and Z3, these variables are shown in

Figure 47 as a function of time. The oscillations are much
amaller for K1 but this 1s not so for Z3. From these and similar
curves we have the following results: <the solutions K1, K2,

Z1, Z2 can be looked upon as sufficiently stationary. For|

cases K3, 23, the deviations are probably only small. The cases
K4, Z4, however, are not stationary in this statistical sense.

On the other hand, the substantial increase 1n the problem time
for cases K4, ZU cannot be defended because of the large computa-

tion times.

One measure for gufficient magnitude of the period lengths
Xl,X2 or X.,#, respeectively, are the deviations of the two-
point correlations for the distances Xl/2, X2/2 or X/2, @/2
from zero, respectively. Axial correlatlon coefficients were
already discussed in Chapter 10.3.4. Figures 24 and 25 give
lucid representation of the correlations. In Figure 24 we

show the followihg using contours for Ki, K2, K3:

. o
L ( X%, Xy ) U xexg, X/, Xg) )

13( 1 (X, kz’,xs)")

RI;C (XB 'dez
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Figure 25 shows the following for cases Z1, Z2, Z3:

g Ont, 9,40 - (R0, 914 9,5 ) |
P
< 2N (x', ‘f"}"’)a> J

R (“":‘)’)=

The apparent symmetries are a consequence of the periodic nature
and period averaging. From'FiguPes 24 and 25, one can see that
the correlatlons flrst decrease rapidly with increasing distance
of the correlated points. This effect 1s reproduced to about the
same extent in all cases. However, at a distance of 1/2 of the
period length, i1t is only in the cases with xl=4 or § = 2,
respectively, that we have suffieiently small correlations
{(about * 10%. For the cases K1 and Z1 we still have substantial
correlations (KL:* 20%; Z1: -60%). The period lengths X, =2

or ¢ = m, respectively, are not sufficient. From similar
figures for plate flow, it alsc follows that X2=1 is too small.
This demcnstrates a defliciency of the Deardorff calculations
with X2=0.7. On the other hand, the period lengths selected for

K2-KU4, Z2-Z4 seemed to be sufficient.

The mesh size is very important for determinling the numerical
effort as well as the period length. The requirement KM>30 as
a prerequisite for the existence of local isotropy is only
applicable for cases K4, Z4. Nevertheless we were able to show
that i1t i1s possible to realize these conditions in practice. /100
As can be seen from the results already discussed and from the
Figures 26 to 64, the averaged results do not differ significantly
from each other for the cases with different mesh slzes. 1In
addition, all the cases having the same geometry were always
treated with the same programs and model constants accordlng to
Table 13. These results show that for the expenditure used for
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cases K2, Z2, 1t is possible to obtain physically reasonable

results.

For the case KZ we integrated over an addltional time span
of 0.096 starting with the solution at t= 3.8. Three cases were

considered:

Case a) At
Case b) At
Case c¢) At

0.0015 JBoth with J'cg
0.003 According to (5-73)
0.003 ch

calculated according to (5-73)
Just as for At = 0.0015

Cases b) and c¢) gave results for the velocities whilch
differed by about 1% from the solutions for case a), (referred
to the total change within this time span of 0.096). The
results of case b) for the calculated fine structure energy are
closer to the reference solution of case a) than for case c).
?his iIs also true for the correctness of the correction factor

J

c On the other hand, the reverse holds true for the average

g
velocities. DBased on this experience, we suggest a correction
factor Yc, in future calculations which varies somewhat less with |

9
At than indicated by Equation (5-73).

The variation of the instantaneous results with a decreasing
time step cannot be considered negligible. This experience
was also reported in [H4]. In the statistical sense, the
effects seem to be small., However, we have not yet carried

out an exact investigation of this.
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Energy Equation _

For the case K1, we started with the solution at t=5.6 and
integrated over additional problem time of 1.8, PFlrst of all ﬁ?}
was determined by integration of the transport equation derived
for it, and then we also used Equation (8-3) according to the
method of Deardorff without integrating an additional transport
equation. In the second case, we first found larger energies élgl
than at the wall meshes, whilich can be explalned by the mlssing
convective and diffusion transport. These lncreased fine
atructure energies then lead to a correspondingly larger damping
of the coarse structure fluctuations. Nevertheless, the
statistical average values vary only slightly. This 1s a
remarkable result. One would have expected that thé integration
of this additional transport equation, which, in particular
avoids the weakness of the Deardorff model indicated under a)
in Chapter 5.1.2, would be very important for the accuracy of
the result. One can show that when the fine structure energies
are calculated from one transport equation, these are almost
completely correlated with the source term P according to (5-44),
especially for small mesh edge lengths h. 1In order to show this
clearly, we integrated the following initial value problem using
Dysys [122], which can be considered a model for equation (5-44)

t

d _ .M £ © 3k |
-a—E'— C‘l’. h D E _hi E

Elt=0) = E,

E, (t}] = %_‘." Lt pt
3

Y

C3=/f ; C‘r:.-/f,g

135



A harmonic function is assumed for the deformation velocity,

and its average value approximately agrees with the true values

D= 5 5B (g4 scutt) |

The factor h"LV3 follows from (4-34). PFigure 66 shows the calcu-
lated results for h = 0.01, 0.1 and (in order fo clearly show the
effect) h = 1. One can see from this that as the correlation E(t)
and the energy Eo(t) corresponding to the simpler model becomes
greater, the smaller h becomes. Clear differences are only

found for the unnaturally large mesh distance h = 1. Thls means
that we have found an important positive result for future calcu-
lations which states that the effort of an additional integra-
tion of the energy equation is not necessary. However, the

effort saved is not particularly large, because most of the
computation time is required for caleculating the source ferm. /102

An additional measure for the correlation between the fine
structure and the macroscopic deformation veloclty is the
factor 55\defined by (5-82). This factor, as well as the
factors ﬁ, 5 ! according to (5-14, 15)ﬂwere determined numeri-

2|
cally and are shown in Figures 48 and 49 for cases Z2 and KU,

It can be seen that the factors qp aékare clearly closer to the

assumed value of one than the value 3 which was also assumed toO

be one in earlier theories. However the deviations of 20% are

not serious. As the figures show, these factors are mostly

independent of position, mesh size, channel geometry and can

be considered as "universal' constants in future calculations:
g, x 405 , GEaA AT

The value of ﬂl given here is in contradiction to the data in

Table 13, and will now be explained.
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10.4.7. _Problem of the Model

In the first test calculations using the method described
in Chapters 3 to 8, we first had unexplainably large axial
correlations. Part of this effect could be explained and
correlated according to Appendix 7. In addition it was found
that the calculated viscosities of the locally isotropic fine
structure model are too large. Using corresponding artificially
changed values of the constant 611 according to Table 13, we were
able to avoid this effect. The reason for thls weakness of the
fine structure model is attributed to the fact that the correction
Cq suggested in Chapter 5.2, 2.5.2 was not consldered. The
correction is supposed to take into account the deviation of
the actual spectrum from the Kolmogorov spectrum for small wave
numbers. However, we do not have any quantitative data for the

lengths L according to (5-77, 78).

In additlon we find that the calculation of the wall shear
stresses according to Chapter 7.5 could not be carried out be-
cause the period averages used for this had fluctuations which
were too large. The ratio of the wall shear stresses used
corresponds to the data of Barthels [11].

~
—
o
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10.5. Determination of Turbulence Model Constants

10.5.1.1. Calculation of Quantities to be

In order to prove the usefulness of direct numerical simula-
tions for supporting turbulent models, according to Chapter 2,
we calculated the length L defined by (2-13) and the length-
production term L-PROD defined by (2-14). For the annulus,
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are replaced by

R1

R! 3@)#&#

mfm s of+

The results are shown in Figures 52 to 55. The length L first
increases with wall distance Z more than k-z (k=K4rm&n constant)
and has a maximum of about 0.17 in the center. The main variation

corresponds to our physical expectations. The length production

F
integrals Jgﬁiuff
-]

term 1s about zero in the center and increases towards the walls.
It is reasonable to have the production term vanish in the center

because it is identically zero for homogeneous turbulence.

10.5.1.2, Calculation of the Constant aj

Since in addition to the length L we know the shear stresses
zamgyf, the kinetie enbrgy 255% and the average veloclty pro-
file, we can calculate the "constant” a; according to (2-9) for

each locatlion z from f
- & oarwd

2 _\Te >
ey L

q‘{3’=

The results are shown in Figures 56, 57. First of all it
becomes clear that this "constant™ is not a true "constant”.

The calculations show that there is a slight increase of the
"eonstants" with wall distance. The large fluctuations in the
center are a consequence of the mathematical uncertainty of

the definition of (0/0). Negative values indicate that the
signs of <@h%>.ahd aéuz@a!can differ, as Maubach-Rehme [90]

also discussed. Based on the large fluctuations, the average
value ay 1s weighted from al(z) and calculated with émgﬂ. The |

results caleculated are as follows:

Case K1l K2 K3 Ky Z1 - 72 Z3 7Y

ay 0.0848 0.0835 0.0685 0.0672 0.0906 0.0910.0592 0.0463
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The average value is about 0.075. The fact that this value 1s 104

smaller than the usually assumed value is a consequence of the

relatively large values of length in the vicinity of the wall.

10.5.1.3. Determination of the Constants ay and 35

First a5 is assumed to be identieally zero and only au is
considered. Using the definition
Ve > KWWY
o Re> (L 5R)

q,(2)=

we calculate the values for a, as a function of position, and this

ig shown in Figures 58, 59. dJust like a the uncertainty in the

1’
definition equation leads to large fluctuatlions in the center.

Independent of this, there is a clear increase in the "constant"

a, with wall distance. The values of a, weighted with L-PROD(Z]
are:

|
Case K1 . K2 K3 K4 Z1 Z2 23 Z4 !
ay 1.049 0.778 1.17 0.513 0.655 0.748 1.12 0.50 l

The general average value is ay = 0.8.

Because of the apparent varlation with wall distance, the
separation of additional terms for approximating the length pro-
duction is desirable. If we use the addltional term with the
constant a5 suggested by Rotta, then we obtain the values au, a5
for the individual cases from the minimum of the following

expression f(ay, a5):

{(q‘uaf): l
e | a<;.> dLud | 3 2
{ {L"’“Df*"[% Y& - L - 37(”4"~"§'F+a5..f_3-——§f;‘>)]}.
RA

cL-PROD () T o+ =l Min }
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The results found for this are as follows: /105

Case K1 K2 K3 K4 _ z1 Y z3 Zh
a) 1.08 0.78 1.6 0.9 0.47 0.44 0.95 0.65
ag -0.13 -1.5 -1.1 -1.2 0.% 0.92 0.40 -0.13
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From this we can see the following:

a)

b)

¢)

The magnitudes of the constants can only be calculated
with large uncertainties.

The magnitudes of the constants ag have the same order
of magnitude as those of ays therefore, it does not
seem justified to ignore the additional term weighted
with ag-

For the plate and the annulus under consideration,
there are different optimum valuegs of ays a5. For

the plate in the center we have

a,u = 1. 8,5 = -1,

and for the annulus with R2/R1 = 5: we have

ay = 0.6. a_ = 0.4

The reason for these differences could be that the
minimum of the production term is closest to the inner
wall for the annulus than the maximum of the average
velocity profile. The approximation theorem assumes
that these locations coincide. From these results if]
becomes clear that new trial solufions must be developed




for approximating the shear stresses as well as the length
production term, for which the colncidence of the zero
point of these variables and the maximum of the average
velocity profile does not have to be assumed in the

trial solution.

™~
'_I
[an]
T

Turbulence models which contain transport equations for-(uﬂaf}

regulire models for correlations
c (B, )y
PU;, = < P (‘;‘?q* 1/ |

These terms cause the energy exchange of fluctuation components

of high intensity to those having a lower intensity [108, 115,

p. 123, 53, p. 253]. These correlations are calculated only

from the coarse structure of the numerical solutions.| Pigures

60 and 61 show PU1ll, PU22, PU33, PUl3 for one plate and annulus
channel. Figure 62 showed the various results for PUll alone.
Figures 60 and 61 show that the calculated correlations correspond
to the expected variation. PUll is negative and PU22, PU33 are
positive. Thls means that because of the pressure, energy is
transferred from the axial component to the other components.

PU13 shows the negative proportionality with the shear stress <zgu;)’
as predicted by Rotta [108]. Figure 62 shows that there are
differences in the correlation magnitudes for the various cases.
The fact that the magnitudes do net increase with the number of
meshes apparently proves the fact that the correlatlons con-
sidered are indeed represented by the coarse structure. On the |
other hand, PUll has the smallest magnitude for the case K4,

This is probably due to deficient statlonary conditions.
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If we use the model trial solution of Rotta (Al-48) and

<g> 1is ecalculated from E 34

EY = Qg_' L

where L is given by Chapter 10.5.1.1 and we use the working
variable

ay = 1,
then it is possible to calculate the "constant" kp. As expected
(41-48) only apply for homogeneous turbulence [108] and different
values KPij(z) are obtained for the wvarious indices 1, J of PUij
and different locations z, as shown in Figures 63, 64. As a rule
the values are all positive as predicted. The average value 1s

0.5. If instead of a.,=1 we use the value suggested by Rotta [116]

a2=0.18, then the magiitudes of the constants will be at 2.8 on

the average and then agree well with the 2.5 which follows from
experiments [115, p. 126]. After this paper there should be a /107
further evaluation of the numerical results in order to consider

the inhomogenuity of the turbulence in the meodel. In addifion,

the often-discussed relationship [4] between pressure fluctuations
(Figures 50, 51) and the velocity fluctuations could be investi-

gated. Obviously we have proven the usefulness of the numerical

method for this purpose by means of the evaluations given gbove.

"~
'_l
[}
(8 o]

11. CONCLUSIONS

|

11.1. Summary of the Most Important Results

A numerical differencing method is presented with which it
is possible to simulate three-dimensional, unsteady, incom-
pressible turbulent momentum transport for Reynolds number
Rem>105 in plate and, for the first time, in concentric
annulus channels by direct integration of the Navier-Stokes

equaticns.
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This method is realized in the program TURBIT-1. The
maximum useable number of diffevrence meshes is not restricted
by the avallable storage because of a dynamic data management
system, but only by the allowable computation times. Eight
different cases were simulated, and in two cases, the flow
space under consideration was divided into 64%32¥32=65536 meshes.

This is muech higher than mesh numbers used earlier.

Based on this still insufficient number of meshes, a fine
structure model is required with which it is possible to calculate
Reynold stresses in an approximate way, which appear as unknown
variables in the averaging of the Navier-Stokes equations over
one difference grid. It is shown that these Reynolds stresses
represent area average values of the fluctuation velocity
correlations and not volume average values. In this paper we
develop a model which differs from earlier suggestions [29, B81] by

the following characteristies:

- A distinetion is made between the locally isotropic and the
inomogeneous contribution. The locally. isotropic contribu-
tion vanishes according to definition when the time average
is taken. The inhomogeneous part makes 1t possible to

apply the method even for relatively large meshes.

- The model considers the different dimensions of the difference
meshes in the various directions, as well as the difference
quotients used. This is an important assumption for the
applicability of the method for curvilinear coordinates,

where the mesh shape must vary with location.

- The turbulent viscosity is calculated according to a trial
solution of the Boussinesq type from the macroscoplc velocity
deformation and the kinetic energy of the fluctuation motion

within a mesh. A special transport equation is integrated
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for this purpose. /109
- The model for the locally isotropic part of the fine structure

is calculated essentially exactly from the assumption of

locally isotropic turbulence with the Kolmogorov spectrum,

The solutions of the complicated integrals which occur in

this case are approximated by convenlent approximations.

By evaluating known experimental results, it is shown that the
assumption of a loeally isotropic fine structure model is wvalid for
Reynolds numbers Re > 105 if the mesh edge lengths are less than
about 1/30 of the distance between the walls.

The difference method allows radial non-equidistant meshes.
Correspondingly, according to the Neumann criterion, stability
eriteria are established for the linearized difference equations,
of the type that have not existed before for such complicated
formulas. Among other things, it is shown that the DuPFort-
Frankel model for approximating the diffusion terms in multi-
dimensional flows with small viscosities and simultaneous con-
vection is [not suitable. The accuracy of the differencing method
igs discussed. The pressure is exactly solved in an effective [ive
way by solving the Poisson equation using the fast TFourier

transformation, except for rounding errors.

Numerical results have been given for plate flow and one
annulus channel (R2/R1=5). Four cases were presented for both
problems, and they differ as to the number of difference meshes
and period lengths. The numerical results agree well with the
experimental values. This 1s especially true for the veloclty
profile and the average veloclty fluctuations, where we found
a substantial improvement over the results of Dearforff [291].

The results are mostly independent of the mesh number used.
Physically reasonable results are already obtained for 32.16-16=
8192 meshes. In addition 1t was shown that the additional effort
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for integrating the fine structure energy equation 1s not necessary.
Problems occur in the quantitative determination of the fine
structure model and in the calculation of the wall shear stresses.

It is shown that the method is a useful tool for the quanti-
tative determination of turbulence models, using the example of
the energy-length model and the pressure-velocity deformation
correlation. In particular it is possible to simulate those
ferms which are primarily determined by the coarse structure of
furbulence. From the numerical results, it is possible to also
calculate guantities which cannot be measured Sr are difficult to

measure.

11.2. Suggestlions for the Application and Further Develop- /110
ment of the Methods Presented

In the future the methods developed will be used to test
turbulence models, to complete such models and to improve such
models. In some cases it will be possible to simply refer to the
already avalilable space velocity fields without any further
integration.

Then one should attempt tc remove the deficiencies of the
model which were discussed above. Among these we have the
following:

- Consideration of the spectrum for small wave numbers

{Chapter 5.2.2.5.2).

- Consideration of the random nature {(Chapter 5.2.2.5.1
- af well as A5.1)| and the removal of the assumption of local

ilsotropy for large mesh sizes.

The program can be extended to annulus flows with slmultaneous
rotation of the walls or induced angular momentum, as well as

flows in four-cornered channels, where it will then be possible
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to also consider secondary flows. This can be done without any
substantial increased theoretical work. It is more difficult to
simulate recirculating flows, but this seems possible, such as for
example flowg around obstacles [75], around bulldings (houses,
cooling towers, etc.) [63] and around ribs. One assumption to be
made here is that there is a limited flow space with boundary
conditions defined on all sides (for example, periodic boundary
conditions). The simulation of tube flows oT similar problems
will be difficult, for which the natural coordinates have singular

points.

In addition, the turbulent transport of scalalp variables such
as for example the enthalpy | can be simulated ugsing the momentum,
The additional effort is not excessive, because four of the
quantities (3 velocity components, one energy) are already con-
tained in the method. An additional variable will therefore
require only about 25% more effort. Fine structure models having
a similar accuracy as well as momentum models do not yet exist,
especially when one wants to consider small Prandtl numbers, for
example. However, 1t seems possible that a guantitative model
can be derived from the theory of isotroplc turbulence and by
measuring the corresponding spectra [17, 1667, With a major
effort, it will probably be possible to investigate problems of
environment and local meteorology using the method discussed here,.
For example, the stability of the atmosphere (already treated by
Dearforff [33] for similar problems) could be investigated when
there are large heat sources concentrated in space, such as for

example power generating stations.
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APPENDIX 1

The Theory of Isotropic Turbulence and Its Experimental Verifi-

cation

In this section we will develop the theoretical bases in
detail which are required from the theory of isotropic turbulence
so that the fine structure model can be determined quantitatively.
The local 1sotropic condition and the Kolmogorov spectrum
are especially important here. We wilill report on the experimental

verification of these factors.

Al.1. Kinematics of Isotropic Turbulence

In this chapter we will describe and define a number of
quantities for describing lsotropic turbulence. We will derive
relationships (according to [53]) which follow only from the
invariance condition of isotropy as well as from the continuity
equation (1-6). These relationships are therefore of a kinematic

nature.

Al1.1.1. Correlation Rij(z)

In order to determine the fine structure model we will
require correlations of velocities at two locations. We define
the two-polnt correlation as follows [53, 66]

Ry (x,1) 5 {up (x-42) uilx+ 1)),

(A1-1)

For isctropic turbulence because of the invariance with respect

to translation we have

Ry [x£) =  Rey () \ (A1-2)
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From the invariance with respect to rotation we have [66]:

R.. (_r)_____ F(v) - G('fJ 'f‘:".J-+ .G(-{)d‘:‘j (A1-3)

{.J - ‘fi

Here F and G are scalaf functions of the magnitude of r

vz Yok 1\ (A1-4)

/

which can be interpreted as longitudinal and Transverse

correlation:
F(+) = < 'L,g(_)_r-%-rg,}-u‘.{g +if_‘)) (41-5)
G ("') = < 141 (X - A ,{gf)_ul ()S f.{.fgd)> (A1-6)

=S S R S O

F(+) G (+)
Because of the continuity equation we have: ' /112
%c Rog (£)=0 (A1-T)
from which it follows that [66]
G(+)= % (4-u=w) (A1-8)

|

A turbulent flow can be imagined as a superposition of
trigonometric velocity functions where the position X is a
variable and wilth different wave numbers k [132]:

u, (xt)/va (ﬂa*‘)exF{V—' ﬁ"f o & (A1-9)

E:={kl,k2, 33l15 the wave number vector with the dimension
|

[1/length]. It is possible to determine the energy contribution

of the velocity field within a certain wave number interval.
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The distribution of'energy into various wave number regions is
called the energy spectrum. A distinction is made between a
"one-dimensional energy spectrum El(k)", a "three-dimensional
tensor energy spectrum Eij(E)" and a "three-dimensional, average

(scalar) energy spectrum E(k)".

The tensor energy spectrum Eij(g) is defined as the Fouriler
transform of the correlation Ri.(r) £531.

E‘J.(_g),,w gsg R, (—r) exp{ 1 A ,,_} o('f'l (A1-10)

The one-dimensional spectrum El(kl) is defined as the
(one-dimensional) Fourier transform of the longitudinal correla-
tion F(rl) according to (Al-5)

E(A,=-7—';.—T )e)rp{ A-r}o{f

y (A1-11)

The three-dimensional scalar spectrum E(k) is finally defined
as the integral of E. (k) over all wave numbers k, which have a
magnitude of k:
E(h)= 3§  E, . (4h)dR
J&|= A (A1-12)

In practice, only Eij(g) can be described mathematically. /113
El(kl) can be determined by measuring the correlation F(r). -
We will be most interested in E(k) so that the followlng calcu-
lations will be needed [53]

E(R
E, (k)= { ER,_ A af dk‘ 13y

E (k)= 27 &% E (A7, hl=k | n1-1)

Le —

Just like (A1-3,8) we can show that:

£y (he)=E, (he)=o (£, ko) 2EbD) 1y )
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According to Hinze [53] as a consequence of (Al1-3, 5, 10, 12)
we have;

Fer) = 2 fE(&) (m'u(&-f)_ Cox(ﬁf)) ok } (A1-16)
(=] |

kg_fs &2'*‘-

Because of (Al-3) and (A1-8) we can therefore determine Rij(g),
if E(k) is known using (A41-11) we can also determine Rij(r) from
one-dimensional measurements.

In the followlng we wlll derive a few formulas which are
sultable for the direct calculation of Rij<£) 1f E(k) is known
and alsc can be used when E(k) is singular at k=0 in a way which
is weaker than k °.

First we will consider Rll(g) and 333 are found in a similar
way.

From (A1-3) and (A1-8) it follows that: ‘ (A1-17)
R ('v“)=—.__4 ...a_[(--|-"'---1'1)F’('!‘)Jl )

A4 - Z,f- a.r | r ‘

If Egquation (Al-16) is substituted for F(r) and if we

subtract Rll(o) in order to avoid the singularity at k equal to
zero, we find

R, (2]~ Ry (0)= 2 CER)f A (+#)= 2L 8(+-R] ok
: o

(A1-18)
where
= 3th {Tk} _ ‘ﬂl'la(-f&) -C'O.f {_‘_&) ' 2' (A1-19)
Al+R)= K AP + T
and
= M _n dtm(tA) Cor(r8)
° (¢@)_ S u A TV @t .
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A series expansion which is valid in the range from C £ rk £ %.T_; /114
except for an error of 10"7 and which is useful for the numerical
evaluation¥® of the integral for a small k-r for arbitrary E(k)

results in ¥*¥%:

AGh) = =2 (k1 M- Ly A k)t

- . . 5€f0 ¢ 393462 »
Blrk)=- = (&) ¢ (*ﬁ)-m(*ﬁ)*ﬁﬁ;?“(*h?"", (A1-20)

240

It can be seen that the integrand is still not non-singular if we
have E(k)~k  with n<2.

The other correlations Rij(g) for 1 # j are then found
acecording to (Al-3) and (A1-8) as follows

_ o+ 3 Fls)
R‘-‘J‘ (i—) - - 1*6 T I

P <.
"rgf, QRAA(AQJ “:$J. (Al_gl)
T 0T, ’ | '

from the formulas given above.

The dissipation e according to (1-16) is defined as follows:

_ duw, , Juy ) oy
€=V (_3_)‘;'+-_J'3x; 3%

Because of the following relationship which can be derived from
the definition (Al-1) for isotropic turbulence

¥ For the Kolmogorov spectrum, an analytical integration is
possible, see Chapter 4.3.6.

¥%¥ Yhen such series expansions are determined, FORMAC [135]
is found to be wvery helpful.
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<au.- ﬂ}_ _ 8 RA__(_zy
axg X[ ~ Ix Ax
we havel

< (3w, /5%, )l) <[aul/axL ) <(3h'3/d /;:.) _PR. G g,)’

ELE

{ (0w 130 15 ={ (o2 [ 19 = { (05 fon, )= ..
{ (v, /a%) [au,_/a* N = (3, 1% ) Prafon, )y = ..

(ot 2N () E (:(353

and therefore
B‘ Fff)

&> = 15 v{ (o, /QXJ)--ASv

From (4-16, 24) it also follows that
cs> = 2av § ECk) Arak|
o V

(A1-22)

(Al-23)

(A1-25)

and therefore we find the following for the average square of

the deformation velocity

o p=e )

pty= % ;foE(k)Ald&k
Flrom (A1-24) we find

athk) oo
B ey = -;,%: § Eh) ko4 ﬁ

and in general we have [115, p. 99]:

az " Fl/ 2 )"
4" L-o =

(2n44/(1¢3) 5f Elk & dﬁ \
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(A1-28)

(A1-29)
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Al.2 Energy Spectra Based on Models of the Dynamlcs of

Locally Tsotropic Turbulence

Al.2.1. Summary

In the previous chapter we saw that many variables used to
describe isotropic turbulence are purely kinematic in nature if
the scalar energy spectrum E(k) is known. Figure 6 shows the
principal|variation of the energy spectrum for isotropic turbu-

lence.

E(k) 1s zero for k = 0, because for isotropic turbulence the

average velocity 1s zero. E(k) then increases and has a maximum

at the wave numbers 5hmrﬁi&;, and L. is considered to be
the diameter of those turbulence balls which carry the greatest
part of the kinetic energy of the fluctuation motion. At large
wave numbers (according to equation (A1-25)) the molecular
viscosity forces bring about a conversion of the kinetic energy
into heat and E(k) then goes to zero for large k. For very
large wave numbers, another maximum could be possible which

would represent the Brownian molecular motion. In order to be

able to consider the flow as a continuum {according to the assumpt-

ion of Chapter 1.3) this maximum must be located at wave numbers

/116

which are much greater than the wave numbers for which the spectrum

becomes zero because of the molecular viscoslty.

We will now assume that using the differencing method, the

wave number range can be expllicitly resolved in the grid between

k¥ = 0 and k=k where we at least have:

gridp

k

>
kgrid\ max

The region which cannot be resolved in the grid, that is the fine

structure, corresponds to wave numbers k%kgriér Since we require
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models for this fine structure, we will present a turbulent
model with which it is possible to glve a guantitative description
of the energy spectrum E(k) for lizkgriéj'

In the following sectlon we will discuss the 1deas of energy
transport set forth by Kolmogorov [67], Weizs#dcker [139],
and others [92, 93, 521, and this will finally result in a trial
solution for E(k) based on dimensional analysis. Part of the
- model can be explained from consideration of the exact equations

[103].

For sufficiently large Reynolds numbers it is posslble To
look upon a turbulent flow as the result of a transition of
various sizes of vortices (" turbulence balls™ or '"speetral
elements")., Only the largest of these vortices are a direct
consequence of the instability of the average flow. The motion
of the largest vortices itself is unstable and produces vortices
having a smaller characteristic length or a larger characteristic

wave number, respectively.

Taylor-Green [131] gave an explanation for this instablility.
Acecordingly, a turbulence ball having a dlameter do and a rotation
W, 1s "swelled" because of turbulent diffusion and (as I would

like to add) centrifugal acceleration. However, since we have

d |

& |

its rotation will increase in proportion to the diameter 4. The /117

o= Ww,:"

ball can only "swell" up to the point where the dissilpation 5~vuf

brings about its decomposition into smaller vortices.
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For an incompressible fluid, we can only have an enlargement
of the turbulence ball in the radial direction 1f fluld can flow
to the ball parallel to the rotatlon axls. This 1s & good
example which shows that certain flow processes 1in turbulent

flow can only occur in three dimensions.

After a large number of such "cascade processes" have
occurred, the characteristic lengths are so small that the
viscosity forces are greater than the inertia forces (the
Reynolds number formed with the length becomes small)and the
kinetie energy is transformed into heat. It is important to note
that the viscosity forces are only effective for small balls or
large wave numbers. According to Kolmogorov and others, it is
postulated that in wave number space there is a range k0<1¢<k1
in which only the inertia forces are effective. This range is
called the "inertial subrange" or "range determined by ihertia
forces". 1In this range, neither the viscoslty v nor the
macroscoplc geometry, i.e. the manner of producing the large

turbulence btalls, are c¢f any conseguence.

According to the model described above, the energy spectrum
in the inertial subrange can only be determined by the sizes of
the balls or their wave number k as well as by the energy trans-
port from the small wave numbers to the large wave numbers,

In the final analysis, this 1s determined by the total dissipa-
tion <e>., From a dimensional analysis we find the following con-
clusion ' g sts
| E(R)= o L& ,67. (41-30)
Here o 1s the Kolmogorov constant (see Chapter Al.2.4 for the
value). The upper limit ko of the inertial subrange is given by

b ALy (41-31)
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where LO is an integral length scale such as for example the
Prandtl mixing length, which has the order of magnitude between
1072 to 10™1. The upper limit

Ry ’{/“Z‘\j (41-32)
is characterized by the "Kolmoéofév iength“ n {see Chapter
1.6.1) which characteriges the ball diameter for which the
viscosity forces and the inertia forces which cause energy
transport (proportional to <g>) from|the small wave numbers to the
large wave numbers have the same order of magnitude. From a

dimensional analysis we find in this case

"
) (a1-33)

3
v
T (<s)
Based on the exact model of Pao [103], we find the following for

the spectrum. |
E(&):d <.’5>:U3 A-%exp{--gd[ (5‘? ¢ i‘]} i (A1-34)

Therefore we assume that the missing proportionality factfor in
(4-33) ig equal to one. The Kolmogorov spectrum (4-30)
therefore applies in a range

4 ¢ ko< J f (A1-35)

~2\

[
where it is probably more éﬁprdpriéﬁe to replace the symbol <
by the symbol <<. See Chapter 1.6.1 and Figure 2 for an

estimation of the order of magnitude of n.

Table 3 gives information on measurements, theoretical
estimates and recommendations for the magnitude of the Kolmo-
gorov constant a. It can be seen that the measured values
scatter between 1.41 and 1.7 for the varicus types of flows
(also in a channel flow). Therefore, the value

o= A5 (A1-36)
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seems reasonable and will be used in this paper.

For very small wave numbers, theoretical predictions [53,115]
state that either

E(R)~ R*

Lo (A1-37)
or
2
E(k]~ 4 D€k <« 'Z{ (A1-38)
)
/119
For the range ¥2>k_ (=f; )i[ , Heisenberg gave the following
spectrum (52 7 .
w ;5 27 3 '@"]hm (A1-39)
Efh)= oL <B4 [4+ FelPoy AL-39

Forlk<K-ij we also find the Kolmogorov spectrum from this. Tor
Js>b-% we find the proportionality k"7
o o
E(k)= % (3 =7 4 ,6>>-:.?t (A1-140)

However, this cannot be wvalid for arbitrarily large wave
numbers, because otherwise integrals of the type
o

I E(&)&'Q""a/ﬂ\

[

would no longer exist for 7’}?‘, in contrast to the higher

derivatives for the longitudinal correlations F(r) according to
(A1-24).

Therefore 1t seems that the Pao spectrum (Al1-34)
is more geheral.
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If E(k) is substituted in (Al-18) according to (A1-30), then

using the auxiliary formulas [13]

j sen{x) dx = - A seulx) , A I cos(x) olx (A1-U41)
x" n-4 P n-4 1
Cos (X7 - 4 cuxr A Sl o |
J 2 olx o T e L ﬁ (A1-42)

and partial integration, and considering the series expansion for
X=0 as well as

&

A (X
!";373-—' dx = -z— T (%) (A1-43)
T (%)= 2678738 (a1-11)
we finally find
48 L w2 -2 b
Ry (x)- Ry (8)= 22 T(3) ot <&y (4- z:rfg..)‘ (A1-15)

(similarly Ry R33) as well as using (Al1-21)

R ()=~ 28 P L)y 5B i "y (A1~46)
ey (£ I (3] <sy™ =, A2y

These results can, for example, be found in [80, 53]; the /120
derivations used here make it possible to calculate the ‘correla-
tions for other spectra numerically, for example for the Pao

spectrum.

Just as the Kolmogorov spectrum is only valid in a|
1imited wave number region (Al-35) these correlations only apply
in a limited range
N <+ <L L, : (A1-47)
This becomes clear if we consider that in contrast to (Al-24)
from (A1-45),we would have
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/

= -~ 09,
!

i

2rF

311;+=0 (A1-48)

and in contrast to experience, Rll(r) would go to -e| for r360;
A correlation which is valid for O < r« Lo'and which in addition
agrees exactly with (Al1-24) is obtained when the Pao spectrum
(A1-34) is used. EHowever, the lower 1limit is non-critical for

Reynolds numbers Re 2 106"’ according to Figure 2.

Al.3  Experimental Verification of the Valldity of Local

Isctroplc Conditions and the Kolmogorov Spectrum

There are numerous experimental proofs of the existence of
local isotropy in turbulent flows which are macroscoplcally
anisotropic. Pao [103] mentions 18 references in this regard.|
The reason for the existence of local isotropy is the effect of
the pressure due to incompressibility. As Rotta [108, 115,

p. 123] showed, the pressure-velocity correlations bring about

an energy exchange between the veloeity fluctuations in the
various directions, so that energy is transferred from components
with a strong fluetuation intensity to components with a weaker
intensity, until there is an l1sotropilc energy distribution.

Rotta suggested the following quantitative trial solutions for
this

Su, , o - L) - FLu w) I
(’P (E‘E +_5;:)) = - 24, A{uﬁ) <&!  (a1-18)

In agreement with measurements of Uberoi [138] we have

&P z 2.5 | (A1-49)
[
as an estimate.
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In the following we will mention three papers on the
proof of local isotropy. Townsend [133] investigated the
wake flow behind a éylinder 1n a flow by means of experiments.
He showed that the velocity-fluctuation field referred to
prime averages satisfles the relationships (A1~23) within the

framework of measurement accuracy for isotropic condltions.

Laufer [76,77] shows that for a quasi plate flow with
Fo ::6-109,>g=0-‘+ and for wave numbers¥
max

k & 12.5 1

we have '
Eyzlly) o b

(x

By ()
i.e. the local contribution of the Reynolds stresses <%/ !
vanishes for these wave numbers, just as in the case of isotropic

turbulence for all wave numbers.
Since in a grid

KM =2 x k
meshes are required to represent the oscillations wifth a dimen-
sionless wave number k, approximately 25 meshes were required
as shown in Figure 7, 1n order tc be able to assume local

isotropy within the mesh.

Laufer measured velocities as a function of time at a position
and determined speectra as a function of frequency n. The re-
calculation of frequencies into dimensionless wave numbers

is usually done based on the Taylor hypothesis of "frozen
turbulence" [130] according to the formula

)
A= ’;;;; | \

where ~ ' 1
D = 2.127m, {&)= 15m/5 |
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Similar data is obtalned from the measurements of Comte-Bellot
[18] for Reynolds numbers likooo £ Bﬂn£.4&XWO! in a plate flow.
Figures 8 to 10 show spectra Egg(kl) and E33(k1) 2s well as
spectra calculated from Ell(kl) according to the relationship
(A1-15) applicable for isotropic furbulence at X3 = 0.5, 0.23, 0.02
for Re = 240000. 1In the center X3 = 0.5 and about half-way be-
tween the center and the wall, (335'0.23) there is already suffi-
ciently good agreement between the spectra for relatively small
wave numbers corresponding to KM&}O\HEshes. Congequently we
have determined local isotropic conditions. In the immediate
vicinity of the wall (X3 = 0.02), however, this is only valid
after KM ® 300. For other Reynolds numbers, the results are only
slightly different.

~
-t
na
PO

Based on these results, we can assume local isotropic condi-
ticons within a mesh for g ;105 except in the vicinity of the
| mp -
wall, if KM } 30!, |

Al.3.2. Kolmogorov Spectrum

Laufer [76,77] was not able to find a Kolmogorov spectrum in
R ?5600001 The

varlation according

e
max

his measurements of a quasi-plate flow at
7

measured spectrum corresponded more to the K
to Heisenberg (Al-40). However, Laufer indicates that there are
uncertainties in the measurements. Nevertheless, 1t seems possible
that the limits k and ki (A4-31,32) coincide for such small

Reynolds numbers.

On the other hand, Comte-Bellot [18] was able to demonstrate
a spectrum similar to the Kolmogorov spectrum for a simlilar geometry
and 114000 €| FRe € 460000;' This is shown in Figure 11 for |
X32=0.221, for example. Accordingly, the limiting wave numbers
for RE ~ 240000 are such that for the mesh numbers |

15 £ KM £ 325 61



we can assume that the Kolmogorov spectrum exists for the fine
structure. The limits increase slightly with Reynolds number.
The upper limit corresponds to the estimatlon given in Figure 2.
Even in the vicinity of the wall (X = 0,06) at wave numbers KM2 20
there is a k"5/3 dependence of the Spectrum

- Therefore we can assume that for Rﬂn%losfand mesh numbers
KM§20‘(in one direction) that a spectrum according to Kolmogorov
(A1-30) exists for the fine structure.

APPENDIX 2

Calculation of Correlations Between Space Average Values

In this appendix we will prepare the fundamentals for the
guantitative determination of the fine structure model. We will
assume isotropic turbulence with the Kolmogorov spectrum and will
quantitatively determine the time averages of products of pairs

of velocities for veloeclty derivatives averaged over volumes.

A2.1. Calculation of the Volume Correlationg which Occur

In the followlng we will calculate the volume correlations
qaziﬁ3 defined according to (4-20), which are the averaging
volumes used for Cartesian coordinates in this paper. Uberoi-|
Kavasznay [136] published graphs of the corresponding results
for line, circular area and spherical volumes with V1=V2. Here
we will consider rectangular volumes and will algebralcally

determine the volume correlations.

The averaging volume V considered is defined by

J4cl & B2y iz a2m (A2-1)
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The weighting functions|K(s) are therefore given by

by
K(3) = 51]; k. (4¢) (A2-2)

where
J/Htl for ,1115 H((Z ’ (A2_3)

kKo ld0) = {o \otherwise

From this it is possible to calculate ‘7"42(5”

n
W, (T)= SEE T Ko (TeE) Ky (3) o VEZ)
m .
= 517; ,—E, Kre1 (Torz)kpeyle) of®

Convolution integrals ovef reétangular distributions correspond

to the individual integrals. This results in triangular distri-

butions [9] according to:

. h » ) B |
Yoo (2= I H:: Mo (-0_' H,:-!I‘-I)\ (82-5)

A2.1.2. Vis Yy Rectangular Area- "Volumes" with

In addition to volumes Vl and V2 which are equal and can
cover each other, in this paper we will also use volume correla-
tions between two rectangular areas having different orthogonal
directions of the surface normals. The following sketth shows
one basic possibility. All of the other possibilities are the

result of rotating the coordinate system.

L

jo ty -~

I

Va
V_ "
| 2|

Hy
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The ares centers coincide. The volumes are defined by

v, : 13414 HetZ 5 9,20 ; [85]2 Hy/2 \g (A2-6)
Yy U =0 ; [Mal€ Haf2, 19312 B3 /2

The corresponding weighting functions Kj(gj, j=1,2

\
ko (902 g=42) (A2-T)

are

e

Ki(3) =

with
4/ Hy for I3 14 Hy /2 j

otherwise

K,y (4302 K,, (25)= {

.0

A/H, Ffor 4.1 € Hel2 \
' o 1otherwise
Keg (830= 25 (02,) |
kz,' ('5_(»,: 7}(0‘-:14) ;

A/h, | Tor 3214 Hyl2
Kaz (3,)= {. ) ' L
o

otherwise

# is the Dirac function:
oo !

f&(’wt‘;) dy=4 ; 1}()‘,;)=0 Xy

-2
Both weighting functions satisfy the normalizatibh condition
(4-14). For this, according to the definition, the volume

correlation is:

P, (X) = f5s ‘.:t K, (T +a";') Ko (90 el 30

fl
-ﬁu

S K Farge) Ky Gy dety,
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This means that convolution integrals with respect to ¥q and Vo /125
must be determined among rectangular functions and Dirac functions.

Both of these again result in rectangular functions. Just as in

5.2.3.1, for we again obtain a triangular function
¢ P ' (A2-8)
Poa (Z [ W Mo (0, Hy-1Ts1) £or (T 1% Kt & (1T31 1yt2)
I otherwise

!

42,2, Calculation of the Average Energies

The correlations to be ecalculated according to (4-2B8) are

the following:
Ve 3 A2~
KE Y = £ F R (w-qud, <> %, U, 2) (A2-9)

where V 1s defined by
I

Ix1 6 &% iagzm) (42-10)

From (4-21, A2-5) it follows that:
}

&, A% o,
Gy = f o S Wﬁ’_‘o_:_’_f_’_).%[ﬁza(z)-&-;{g)] o T, ol Ty (A2-11)

ax, =ax, \J~ 4’5"

Because of (4-5) and (H—38) we have:

£ (R (F)-Rector) = 4o <85 3;2:;””1 (A2-12)

If all lenths are normalized with hzﬁﬁa_* , it follows that

<KE> = o, <3P ¥ S (axith axdh,.. ., dxé/h)l (A2-13)

where
: 7z A2-14
n U by )-8 7 (3 O750)) 0t ) 5
[
This 1ntegral can be determined analytically for n = 1:
EA(he) = Ealy)= -295 ==a,VS'L (A2-15)
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For veolumes of equal length 4&=L\we find the following

numerical result:

E2(1,1) = 0.6293 | (A2-16)
E3(1,1,1)=0-7461'; (A2-17)
7 ox, |
Since we must always have g: h =4b the volume region Vn
approaches a linear region for ‘Aﬁh-ﬁ'ﬂoi and therefore we have

3%,‘;‘;@ En (ox,, ax,.. 4%, )= pys. M,,”" (A2-18)

The numerical solution of the ihtegrals for various edge lengths
A&ﬁ and for n = 0,1,2,3 can be approximated with the following
formula with a maximum error of 1%

PP e

“rt
E, (b e, . b, )= ous (= &
and we find the following value by a least squares fit
B=0.69627 |

and this approximation function satisfies the limiting value
condition (A2-18) exactly.

A2.3. Isofropic Properties of the Sguares of the Deformation
Velocity

The time averaged squares of various space averages of the
deformation velocities to be calculated according to (4-23) to

(4-26) consist of the sums of nine sum terms characterized by

i, J:

D2, (A2-20)

Dl= 2 =
A - Ex4 33 AY S
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It is sufficlient to derive the method of determining £ﬁ1Q£L
D21 »(M) and M characterizes the grid. )
3

k

| M= [A"«, A*’&,A"’sf ] (a2-21)

The other sum terms can be calculated with the same methods,
if instead of M we use a sultably rotated grid, as given by the

following formulas‘z
(M)= 2 .M

¢ (A2-22)
WO (1= g0 (Y -#) 45 |
lv, 2V deseribed the reduired rotation:
d}q UQL ‘ﬁa . OE sz 0&3
é = I dea dis b ). V= d:, L 42 (A2-23)
o Nda du da U die) C-dogdha) (U-ig-fis) ]|

These relationships follow from geometrical considerations.

Therefore in the following we will first only consider kDil‘ kpie .

A2.4, Reduction of the Squares of the Deformatlon Velocities

to Differences of "Space Correlations".

The following derivations will be done in detail for lDil’
1D§2, The results for the other variables are similar.
2
Az.4.1.  4Dpy

1D§1 is as follows according to (4-23):
t )2
4P '2<(d;a"$}>£
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If we note the definition of the difference operator ¢&4l, we have:
0= 2 ([ o0 0, 06 9, 5,0 T)

M[<[*u 5t 85, 20 1)+ L% O 52 03
2 (5 2 2, 3) T O, ) |

A

'I

Since the individual ferms do not depend on the actual values
but only on the differente vector, we have

j
D:zs S [<f‘f@ 4',,!’ ) < [AX ‘,0)>}‘\(A2_24)

X X

15 *ps %3

Starting with the definitions, for 1D§2 we find:

Dl = (d, G (S, 4 +d, 5 )
<-57;r (:U f,r,xz"-'“ "‘!) ( Xz’éi&lxa))z)
+<;¢§gn-[%'fx Xy 5% )- %alﬁglxg—%§ljﬂgi] | i

% ("A"‘i“;"’x,":)'uaf":f"%“,xz,)"g)]) |

t

n

After evaluating the square and the product, respectively,
we can again collect a few terms, because the time averages do
not depend on x. If we consider the following symmetry condi-

tions which are a consequence of {(U4-6)
$ %, (0,45 o) (8 0,0) =Y, (0% 0) Ta (-2, 00))
%, (o Axf- ,0) % (2% 0 o))——-—@,, o—-—,af{rz(._,s 00)>
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then we have

i = {8 0= Y (o200,0))f

4 e
'fzggz; %Q'u

(%, 25,0)

.'ZD"?;:A‘;‘I (<’t“'1€‘ (ﬁg‘.‘,o’o))._ <A€E_ % 'ff IO)))

2D = d:la-[(!ﬁ;’%( L &2 0))-< % 47 (0,2 ax, a))}
44;;@(1 <%‘:";2€ (d‘x" sz,f’})

3ZL: = A 442

30,,: = 4:22 {(’""" (0)) -~ CARE .axz,o))}
* e { R0 - (G (ox,000)
fom (R (2,9,0)

A — A A A
40; arye {49(@% (0)) - 47, (ax,00))

A~ o N/
w, (2ax,80)p*
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(A2-26)

(A2-27)

(A2-28)

(A2-29)

(A2-30)




A A A —
#D»f: - £ ax} {'; <% 1, (Q)>"3<%4'£5, /q,.axl’a))

(U, (0,205 0 )Y (10, 05 T (0,00 |
.
+

§ ax? [?-' <% (o))~ 27 (Ax,,0,0)) - (a2-31)

Qe % ax, 00)) +(B5 (20x, 00y, 0)) - (55 (5.5, )}

<l L A e
+ Jax; ax, 415G (%9, 4% o))-(%, ({ox,, 4_:;{0))

= G (47, 300,0)<(8,T ($ax, 2 ox,0)) |

A2.4.4, Definition /129

We should note: the squares of the deformation veloecity
averaged over time according to (4-23) to (4-26) can be calculated

if the "space correlations"
% % (Fuf0)
U Y L§450.0

are known. In particular we reguire

o, (ax, 85,45, £ )=(40% (f, £ ,0)
o, (ax, ,ox ax, F”?;)-“"- G (kL E,9)
dly (ax, 00,05, F, £.) =0 % (f £, o))
dy (ax, axon €, 8 ) =B (£, §,,0)
G lon oo f k)= (5 (8, 8,0) |

(A2-32)
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2 2~
The other correlations<:

u, Y, (f))cam be caleculated from dl
corresponding to the development in Chapter AZ.3:

G55 (8, §,00)= d(0%,9%,0%, £, 8|

(A2-33)
Also we can calculate <%-(:1€ {?Hﬁfo))t according to

Hilp g o=aig(§, 8 0)=d (00,8 1)

(A2-34)

because the exchange averaging operations lead to the same volume
correlations as according to (4-20).

The correlations dk’ k=1,2,.

.5 defined above will be
calculated in the following section .

A2.5 Caleulation of the Correlations Defined in A2.4.34

The calculation of the correlations dk(ﬁ;ﬁ); k=1,2,..,,5
according to Chapter A2.4.4, is carried out using the methods
prepared in Chapters 4.2 and A2.1.2, where R ,(r) and Ry, (r)
are given by (4-5) and (4-6) and £, is given by (4-39).

"
'_J
LA
lan]

We define the following abbreviations

3

hz Jlax,. ax-ax

hez2  ax /h ; A=43,3 (A2-35)
Cxs fo/h

Therefore the results can be giveh in integral form%
_ 13,28 X% (A2-36)
| dk (4x, ax, aX, E’_ ﬁ_)-— R, (0)-F <& H™ oy (Aﬂhzlhgfzﬂ zz)).

k=423
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hy kg ' _
ol (ha-1131) (hy=T4) A 2
o, Qf LA () ’{/f- ﬁr) olT, oft, (A2-37)

232
—hj o h.l }13

2
v= 2l (T ) T

h, h
x * (h,- T 7
_.2 h iT, f)("g 2) 2) f.?( (84" 14)2) A
-h4’ ar ha 44 [q- (o — -"‘"—-—-4 1 ol t3 az" (Ac. 58)

Ti2 (T2, )% (T 12400 ;

* ook 4 1
w2 [ LT "f**j"y o, oz, o, (n2-39)
~h b 0 hy ¢+ 3
* = (T 42)% (0,204 T

d& (AX4 ; ax, ,MJ/ E, J Fl') = ﬂ <£>%A'U3 d;(“‘.ﬁ l'z,z'_{, szil))' (A2-40)

A= 4.5
Ch 1T, ) (b~ /r;l)_ (T,+2,) 2,

ofT, o'T

L
j f he-Ty (T, ¢2,)(T,+2,)
_1;} 0 M3 [( T eE e (7-',_*1"—‘;)11‘731.]2/3

{(A2-41)

dB ot ot (o yp)

Table 4 shows FORTRAN subprograms with which these integrals /131

can be calculated numerically. For the integration, the subpro-
gram QSF [65] is used which integrates equidistant tabulated
functions using the Simpscon rule. The number NN of the support
values of an integration variable to be specified in the COMMON
region NNNNNN must be about 50 in order to have an accuracy of
10_3. The COMMON region CWORK contains the working region re-
quired for integration. It 1s designed for NN<100.
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The numerical evaluation of the integrals given above requires

a large computation time.

Therefore it i1s desirable to prepare

approximations which approximate these exact solutions as well as

possible, The approximations must provide the same results for

speclal values of the parameters. Among these we have the follow-

ing limiting values:

Lo
,‘;1.-;.,-.-

-‘vw‘ OJ (l” h21h3,0.10)=3% h.?

hy yoo

Lo
2 o0
2, %00

0(2”-((441 l'l., L'3, o0

»* _ 9 23
(h»n"’a,hs, 0, 0)= 70 ""z

13

" _ ¥
O{A U’x, L't; 1’3 1% %2 )" ( 242“312) (/f_-f‘(i' 42 ‘))

Yy 7
)= &y
2

‘izxL(&le,AB,cﬂoi)zz.zo hg

ol (h, e s, 2, 8= (2,221 P g2))

» : . Kyé] ;
d3 (A.nl'l:[’h 0102 = :f% (1’!) b “

-«
* : £ £/2 , 23
" (b, e by ,00) = £ (37 4

L 4 U3
ol (& l':./l’z 0,0)= %5 hy
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. X i:r'.
Lonn cl3va by, ;_."fljcf-'a}f%") (/’dﬂ"i‘*z«f))

i,zlaoo

ol *(h, by by 02, )=l (h, by by 2,0)= 0
ZMM d#x(b l"-'-fL’J‘f -r.r'zl-)co A

hy>o0

ol Chy oy by, 0,2,)= Al (b, o by, 2,,0) =0

L, ofs™ (L, by e, 2,8, )= 0

In addition we require that the approximations for dk’ k=1,2,3
must agree exactly with the numerically obtained integral
solutionsat:th, hs, hs, 2y, z,) = (1,1,1,0,0). These reference

values are:

. *
k a, (1,1,1,0,0)
1 0.6293
2 0.5506
Since dl4* is required the most for Z = A:,iz" "‘] and d5¥% 1g

only required for z'-‘b Eflﬂﬁ » the approximation must satis-
fy the following requlrement in agreement with the numerical re-
sults:

a4 (1,1,1,1/2,1/2)= -0.1376 da*(1,1,1,1_/2,1)=a0846!
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Approximations corresponding to these requirements are
shown in Table 5 in the form of FORTRAN subprograms. Table
6 contains a comparison of the results obtained by direct
integration or from the approximation functions. The errors of
the approximations are not especially small, but they can be tclera-
ted because the constants of the fine structure model calculated
according to the approximations deviate at the most by about 20%
from those for the exact soclutions. /133

——

A2.6. Results for 2D2 and FED

Using the relationships derived in Chapter A2.3 to A2.5,
it 1s possible to calculate the quantities kD2 and FED. These
results are best presented in the form of a program. Considering
the subprograms D11, D12, D13, D14 and FED1 glven in Table 7,
the results are as follows after extracting the variables having

dimensions .
= eSS &% Ay Ax (A2-43)

2 DIR(% %52 57), hetay
FED = ,f; <8> FED/f .i‘_z:.'.’ ‘A_:% é—"-’?) ) P (A2-44%

£5s faafdgiven by (4-39, 40). See Chapter 4.3 for numerical

results.

APPENDIX 3

Determination of a Constant cq

Here we will report on the calculations of Smagorinsky and
Lilly of the value of the constant c, contained in the trial

aolution

175



wiu = (e,h? [7( )] "*g'JJV”—e’”J! (A3-1)

We will discuss the assumptions and approximations. In addition
we will summarize the experience of Deardorff and discuss his
method for calculating the kinetic energy. At the end of this

appendix we will calculate the constant cq according to methods
of this paper.

A3.1 Calculation of cy according to Smagorinsky

Smagorinsky {118] uses a trial solution corresponding to

(A3-1) for the two-dimensional, global, meteorological simulation
where

¢, = k, (A3-2)
and k is the Karman constant [120]:
k& 0.4 (A3-3)

V-
One obtains this result [32] if u and Qj‘are set equal to their
time-average values in a boundary layer with constant shear
stresses. For this we have the logarithmic wall law/[120]:

Caud = -";’ L (3."5»\.1)% (A3-1)

(z' = wall distance, E_ a constant which conslders wall roughness )
Here we therefore have

-2
<’tw>‘/‘ 2 Ly y=A= (¢, h) (A2) (43-5)
If the height at which p is being determined 1is equal to h,

then (A3-2) follows. This result can at best only apply for the
immediate viclinity of the wall, according to our assumption.
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A3.2. Calpulaﬁion_of cl‘according to Lilly [SQ{ 817

For the derivation of the mesh averages of the basic equa-
tions Lilly [80, 81] and Deardorff [29,33,44] made use of| the
following averaging operations.

.- L EpE
a) Y (x,x%x,th= --,_.Jf _;E’ 3 Y (X2, %48 Xpe2y t/ol2, dE, dE, ;(AB-G)
i |

v v f.‘i! ?*‘i‘ ?""‘f £ ,
5} gb\"h XAIA};'{}E: ;ix__.l‘( kz_h ,\3_& 9’ {e"’ %l, é‘(" / 91 Gf‘a‘z (e" { (A3-7)
-« a

3

/135

=

For the flirst one we have:

V— - ‘
3 Ve
- (43-8)

and for the second one we have:

Y

-
2
o+ £y

Nelther of the fwo averaging operations was selected con-

(A3-9)

sistently. The baslc equations for determining the constant ¢
were derived by Lilly [81] using the first operation. Deardorff |
[29] used the second operation, and in addition he used (A3-8)

as an approximation. The conservation equation for ETi derived by
Lilly using (A3-6) has the following main terms:

— P
t p—— .. —
%;E—:' = — Konv + D"ﬁ - '4,_"1{," .__J.g‘ - & (A3-10)

The convectlion and diffusion terms Konv and Diff are of no conse-

guence. %:\ is defined as

- V— v— (43-11)
Vo _ e, 2 Q te z]
&= v [- (557~ (5=) !
. 1
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and there is also a term corresponding to the dissipation. It 1s

assumed that the velocity fleld is locally isotropic and that it
has an energy spectrum E(k) which corresponds to the Kolmogorov

spectrum. The trial solution (A3~1) 1s substituted into (A3-10).

The additional term ?fQ-ZQ“Q' vanlshes because of the continuity
$

equation

V—_— V— Ve V—
% wly' deo Do = Y, q 2z ou:

& % T % (A3-12)

. .
For stationary and locally l1sotropic turbulence, averaged over

time we have

< ‘;E’> ( kowv> - ( D(f-f} =0 { (A3-13)

and therefore we obtain an equation for the determination of Cqt

.- <D -ﬁh\
LR LT Wy L (A3-14)
Here we will use the approximation

< (% (Vi'j)q)&'z): <}1 v-— )z\m

! (A3-15)
as well as
AN \
<£ > - <E>, ‘ (A3—l6)
where ¢ 1s defined (1-16). Therefore we have
l
c ~ s> - Y” |
) | (k3-17)
2\l rg
5.2 mevmarion of (BID I
According to (Al-27) we have
oo
& Dly= # JERIASA (83-18)
6
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If the cube-shaped mesh with edge lengths h 1is approximated by a
sphere with a diameter h and if we conslder that only those parts

of the energy spectrum contribute to <1 ))'whose wave numbers

k £ ko can be represented by the macroscopic structure of the
average velocity field, and if we assume the followling according
to Liltly [81]

”
k = "",
° r (A3-19)
it follows that
_ 4
{0 = 4 J ARk ‘{ (A3-20)
|

If we substitute (4-14) for E(k) according to definition, then we

_ — ¥ 2
<% LJ..’l)_ = 3 ()"« <& /3\ (A3-21)

and therefore we obtain the following for c, together with
(A3-14):

have

o
¢ = # (=) \ (A3-22)

For o = 1.5 we have

¢y = 0.173 (A3-23)

If we assume the follow1ng approximatlon [807]:

Bm.. 3_144) =~ %< ak‘)) ( (A3-24)

?K]_
then because of (A1—23) we have
(A3-25)

{4 ('5}_’-)1)“-‘-' 3 < (Vau, fog 1)+ 6 (G 1om, /). '
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(A3-24) only applies exactly, as Lilly [80] himself deter-
mined, if the averaging volume V includes fthe entire flow space.
Lilly [80] numerically calculated the correlations which cccur
in (A3-25) according to Appendix 2 for a cube volume V having
equal side lengths and by using the averaging operation (A3-T7).
For oo = 1.5 he obtains the following result:

<4 (By)y= .05 <P L (A3-26)

C = e.1
4 7F (A3-27)

I11ly [80] also investigated the influence of difference formulas
on the constant cl. For this he assumed that instead of

A V5 !bu Sa 9% 8
<4 R ; oY’ ’ A3-2
2 D o= i O 25%) . (A3-26)
we must substitute the following in (A3-17)
T V- ‘ V- L \
A - TR RV - U A3-2
4 Dhq_ﬁ ‘ﬁ 5 (AﬁjﬂlfudctﬁJ\ (A3-29)

The following difference operator Ai is defined:

For the numerical evaluation of the expression (A3-28)
defined in this way, Lilly numerically evaluates six-fold inte-
~grals according to the method given in Chapter 4.2.2 and obtains
the following results for o = 1.5:

(405 1= 7.5 <5 57

v |

(A3-31)
and

¢y = 0.22. ' (A3-32)
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A3.3. . Values of cy according to Deardorff

Deardorff [29, 30, 31, 32, 33] performed numerical calcula-
tions for plate flows according to Chapter 1.5.3. The square of
the deformation velocity in (5-3) is calculated according to the
following difference formulas (using the notation in Chapter 3):

S ~ — 7 — 12 -
%(D‘-J') - g’ (d)lr"tﬁ"" d‘u' u(}l (/,'J;‘_-]q})*'z(%.u‘_‘) dz‘:]g] (A3-33)

The calculations for the plate flow with a constant axial
pressure gradient [28, 29, 30] showed that the values of Cq
calculated by Lilly using (A3-33) are too large. In order to
obtain turbulence statistics which would agree with experilence,

Cq would have to be in the range

0.08 < ¢, £ 0.12 \! (A3-34)
For the investigation cof the stability of the atmosphere the
influence of buoyancy forces caused by a temperature gradient and
‘the Coriolis acceleration [33], which 18 considered as a plate
flow, it was found that we also have cfﬁ_0.13 in the isothermal
case {except in the wall mesh, where the calculations are performed

with ¢y = 0.10). However

cg ® 0.21 (A3-35)
1s used when there is a temperature gradient. This change 1s
Justified by the fact that a large contribution of the average
deformation velocity is made to (A3-33) because of the Coriolis
force in the iscthermal case, which would lead to large turbulent
viscosities according to (5-3) if ¢, were not reduced. It was
found [33] that the value Cq ® 0.21 can always be used if the
average veloecity is first subtracted when (ﬁ%)i!is calculated

according to (A3-33), therefore
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t( G~ u))rd}ﬁ(u {q‘>))1 (,( d“ﬂ][ﬂ) I(AB 36)
2 (d -<w ) ) ;

10N

(T)*= % (a:.
o+

A3. Y4, " Caleulation of the Kinetic Energy Vg

The kinetlc energy is an additlonal term 1n (A3-1), but
1t can be treated together with the pressure per unit of mass.
Therefore it must not be explicitly known for the integration of

the momentum equations, but it 1s required for the evaluation.

A rough approximation corresponding to the approximation for
<b /} in Chapter A3.2.2, results in the following:
)

(E > 7)/: ECR] oA (A3-37)

and with (4-4):

(A3-38)
CFy = 3 <™ (H)7 /139

With {D”’f according to (A3-21) it follows that
> = (U2 b/ (am) = 0-050- 42 L (B z>'<A3 39)

Deardorff [29, 33] calculates ﬁE\while referring to Lilly [81]
from the following eguation '

- . _ l (A3-40)
. J/z/(ce.:,,ﬁ’ with Cq =0-09% |

If p is given by (5-3) and ¢q is given by (A3-32), it
follows that:

E> = %m( (Be)) =0.27 b { (B V) | (A3-41,42)
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The kinetic energies of the fluctuation veloclties calculated by

Deardorff are therefore too large.

A3.5. Calculation of the Constant cq using the Method of
Chapter 5.2.2.3.2. and of Appendix 2

If the trial solution (A3-1) is substituted in the conserva-

tion equation (3-31} for Vi land if the time average is taken
E

according to Chapter 5.2.2.3.2, and then if the average is taken
over the entire flow space and if one ignores the molecular dissi-

pation due to the macroscopic velocltiles, then with

- v~ 1332 VR TRY.
o3 = <(§- Dl.'.,') )/(f nl:}' (A3-43)
we obtain the following for constant c,:
c = LES 14
a° 2 217, 1
'. h* (P00 ) (A3-44)
2 2 \
where 3D and ,D” are defined by (L-25, 26).
If we use the results of Appendlx 2 we find
Wy

. .
c = [-f;’ DAL (8%, /h, 8%, (h 86Xy [h ). D43(d},ﬂ,4§/4,ﬂ3/4)] ’ (A3-45)
D12, D13 are the FORTRAN subprograms given in Table 7. For

of = 1.5}55:-4.‘we find the following numerical resulfs:

AX A A=A A A AX,:AX, : AXy = . 1008 Do

C, = 0.245 - 0.225

A

These values agree very well with the wvalue cl=0.2l, which
had proved itself in [33]. Equation (A3-46) also showed that the
error in assuming (5-6) for the mesh sizes used by Deardorff [29]
ig small as far as the magnitude of the constant ¢ is concerned.
However, this does not mean that the viscosities calculated with

this are correct for meshes not having equal lengths., This was
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discussed in Chapter 5.

APPENDIX 4

Solution of the Poisson Equation using the Fast Fourier Transfor-

mation

Al.1. Problem

In Chapter 6.2.2 we established a Poisson equation with
Neumann boundary conditions for calculating the auxillary
potential ¢ or the true pressure p. Written out, it has the
following difference form for cylindrical coordinates (see
Section 5):

A A Then g, " ("rka4n_+ ottt +_d_-%:.t&.14
"rﬁ O BThun  CVRM (A an, TSR A, TG kA

(-i" AFJl (’7&.{,0;.4 k s 4t k+ . "U"’ R) f? Jar,'- _2%.1.1.;!!",)‘&"‘4.;1‘&)
ek T AR M g A2, T A=da, . kM

(A4-1)|

Boundary conditlons:
a) Periodicity in the_?;@direction:

e . L L e AL - - - s . L s Lo
POnk T W o prI0R R 20,2 24 J—U,.c,;r.a,...hm_m
b) d:,.“{’l = 0 at the wall:

e ' | (A4-3)
%ﬁf&;ﬂ"’ W&.,a;;{; 4(,\ F}f ’}L‘—I\Ji"rh*‘f; ,(-__- }H)d_,fz ;Dh \

With these boundary conditions, ¥ is determined to within

an additional constant. We must satisfy the following consistency

condition [87] to guarantee the existence of the solution:

[ B 7 T (Af-l ’4)
zE Jz;f t‘{“J'& AZ . Ay AT, - A-a

i
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A4.2., Solution Method

In the following we will describe the solution method,

A direct
method is used which is much faster than the iteration method [16]
The method is |
The periodic

the principle of which was first given by Hockney [55].

and does not have any stability problems [61].
very similar to the one used by Williams [1411]
boundary conditions make it possible to use the fast Fourier
transformation routines.

In addition, the method used here makes it pessible to use él&l
variable mesh separations in the radial direction. In conjunction
with the transposition algorithm| described in [38, 125], the
method used here can alsc be used effectively if the fields ¥

and q, respectively, cannot be completely stored in storage [128].

The solution method is based on a series expansion of the
source term q and the solution ¢ in the azimuth and axial direction
into trigonometric functions, which identically satisfy the

periodic boundary conditions (A4-2):

vaT [ 4-4) - fzar.{w)
Dt (M4 V-1 DH{‘ v M (A4-5)
pl-.(") f ) ‘
A P _ 4) R ,c;—_‘“_f’;(_i (A4-6)
?CIJ}h =9§; /‘.L:) C&%U,Vﬂ-‘} & e

No series expansion 1in terms of eigen functions is used in

the radial
use Bessel
If is more
real elgen
instead of

to deal with four products.

direction, because in this case it is necessary fto
functions, which are much more complicatéd numerically.
advantageous to use complex eigen functions instead of
functions (sin and cos) {as in [141Y. This is because
one product of ftwo eigen functicns, if will be necesgary

Also, special situations occur for

D=M=0| which are avoided when the complex notation is used [50].
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The complex coefficlents CQ in (Al-6) can be calculated as
follows based on the orthogonality properties of the eigen

functions

IN 1M RO LIC2D] Y"' &2?(:-4)
cel f4Ww£)* S qg,..,e oM ]
v S s, ok " /(Au 7)
/4 04,2,.., iM 45 V= p,A,z,.../:HJJ— A:#,-?,...,K”-
The initial data qy 3.k consists of IM«JM real numbers
Ll A

for K = const and the Fourier coeffielients are made up of
CQ IM-JM complex numbers, which is twice as many individual
values. However, it is only necessary to store one-half of

thls data because we have:

ce f/ﬁfz_, ved k)= CQ"“(;H-/-/“*/J IH-Ver, &)
V= 0,4,2,.. (31-1)/2
/4:44,2’..-’, (J.H'ﬂ)/-z
#* 0,0 ‘
ce{ 41 &)= CO"‘(/f,/f; R ) l(real)

{(The star characterizes the conjugate complex value)

(AL-8)

AY.3. Evaluation of the Fast Fourier Transformation (FFT)

Equation (A4-7)and Equation (AL-5), if CP values are known,
are calculated according to the fast Fourier (FFT) method
developed by Cooley and Tukey [19]. Reference [20] contains
a detalled description of this transformation. For the FFT,
the periodic propertles of harmonic functions are exploited in
order to reduce a large number of multiplications to a single
multiplication. When the sums in (Ad4-5,7) are evaluated directly,
the number of multiplications increases in proportiontx:(EM.JM)Z-
For the FFT, the number of operations is only proportional to
(IM-IM)In(IM.JM). The FFT therefore is especlally effective
(also for transposition [125], if the factors IM and JM can be de-
composed into as many smzall prime numbers as possible. The al-
gorithms also become especially simple if these prime factors
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are all equal to two. Brenner [14] developed a program "FOUR2"
which corresponds to the FFT. It is used here,

A4.4 Establishment of the Difference Equation for (P

(Abbreviation - Cau,u,& cp(/“f,,’ vid, k) il

CRuw, k= CR (aey, e, k) )

The coefficients CD4vaare determined from the difference equation
(A4-1}), which is substituted into the trial solution (A4-5,6).
We find

A 'rhi""fl Jr/f (“r& - ;fk-(/) A\) k
CP —1= L 4 3 8 +A,(CP ‘
"’&A‘rk Aﬁf"fg_ /‘) Y, Aes ("’k"’i dfh s Apm] (el /(’a:: 9-)
A Tp_tn
+ cP = CQ u,»
WA Ay v, kA yal ;R
A=1,2,.. Kk~
P (A4-10)
P L)) Ay =2 (A-cor (bEE))

V= 04,2, (:n-,f,b-/-,- 0,42, (1r1-1).

: __a—-m— —_——_— J e

From the boundary condltlons (AH 3) 1t also follows that
CPuipa = CPuy o t /143
1* ’
(Al-11)

CP/“,,p KM = CP/‘,’. KH*‘f l!

The equations (Al-9, 10, 11) represent IM'JM linear

equations for/the complex coefficients Cg%gk ; k=0,1,2,.., H%KM+ﬂl

) A
These equations have unique solutions only if Ggﬁ%;-+ap)#o)

because otherwise the solution is only determined up to an

additional constant;hhat is, ponly for >3/f¥40| . The case _
@F= 0,0! must be treated separately. After dividing by —.1§£QL_“_ \
, %A% AThurz

we obtain the following result in an abbreviated form from -
(AbL-9)

- Cp/g,p’ bea 1 B(ﬁ) C’;,,,, v, A — C(h) C'qu‘y’}{_,, ..-:'D’JL (AL-12)
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Ch) = Lhay Then
Spny - Taera |
where ' B(h) = A+C(R ) AI& Yo T ({N +2/“)
apR R

kstre
- “Ta ‘ .
D{A) =- Tar, DR Ohemn Ceﬂﬂ’,k (Al-13)

Al.5. " Solution of the Differential Eguation for CP

A4.5.1. Case Y,u#00 |

The system of equations (AlU-12) can be solved for ‘%ﬂ#Qﬂ
using the Gaussian elimination algorithm, which is simple and
fast for such triple diagonal systems. However, there is a
simple recursion solution [111, 141], for these equations, which
corresponds to the Gaussian algorithm. In addition it is very
stable [111, p. 198].

The following trial solution is used:

C P/q’ v’,-ﬂl = CP ")JA’L/I E(R) ‘f'-p{&)f &‘: kH;KH"")"')"’ik(All—lli)
. ~
From this it follows that:

CP uoyv, bt = CFuy, hts E(R)E(R-1)1 714 ) ECh-1)t F( K1)

We wlll substitute both relationships (Al-12) and therefore
we obtain the following conditions for arbitrary CP

E(k) = 1/(B(k)-C(k).E{K-1))
F(k) = (C(k)F(k-1)+D(k))-E(k)

(Al-15) /144

The boundary condition (AU4-11) is satisfled for k=1 if

we have

i
o -

E(0)
F(0)

Starting with these values it is possible to calculate all
the E(k), F(k) for k = 1,2....,KM from (A4-15). E(k) just like
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B(k) 1s independent of u,v and therefore cannot be calculated
once and for all as stated in [141]. From the boundary
condition (Al-11) for k=KM and (AL4-14) 1t follows that

CP

v KRS F(kn)/ (A~ ECkMI) (AlL-16)

With this initial value then it is possible to calculate all the |
C;*a& for k=KM-1,KM-2,...,1, according to (Ai4-14).

Al .5.2 Case v,y = 0.0 Consistency Condifion

For v=u = o we may arbitrarily set, for example

From the boundary condition (A4-11) and for (A4-12) it then

follows that
C POIO.‘Z = Dfﬁ)‘\

The remaining Cﬂmqkl can be calculated for k=3,4,...,KM accord-
ing to (A4-12) from

C-pa’o’& = B(&“’f) .CPO,O, k_-! - C(‘A_’{)CF'O,OJ&-Q -D(k-vf)( (Au_l'T)

In order to also satisfy the boundary condition k=KM (A4-11),
D(k) must satisfy a condiltion which corresponds to the consistency

condition (A4-4) and which will now be derived:

Using the following abbreviation for the gradient of CP

Fhitn = Taern (CPO,Q.km ‘Cpo,o,hJ/Aﬁufé_}
it follows from (A4-9) that 4
g %y (351\41";?&-4/..)’ Caqqﬁ P

and from (Al-11) it follows that &g=0]
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By complete induction 1t is easily shown that we have

A |
- + - . i
Jbewr = G2 h 4 (oo p |
- J .
In order for the boundary conditions (A4-11)
=0 | ’
d xmen =0 |
to be satisfied, we must therefore have

Kh
é coq-o,ﬁ.'d,k'dfk:o

This condition is directly equivalent to the requirement (AlU-14)

because for f?“”} and from (A4-7) it follows that

Y, "allla \
Cco = = 2z
o.lol’&' fH-DM joa doa

?":J; K - l\

Since di 4 is equal to the divergence of the veloeity field

>
{Qﬁ,a;‘ai]¢, ané ?ts component %ﬂlnmst always be equal to zero
at the wall according to (6-5), the consistency condition given
above 1is always theoretically satisfied according to (A5-11).
Because of rounding errors, the sum (AbL-4) can be slightly
different from zero. This can cause non-convergence of the
iteration sclution procedure, as our own numerical experiments
have shown. The method described here is not sensitive to such

rounding errors.
The method described, therefore, has the following advantages:

- exact solution (if rounding errors are ignored) after
a finite computation time
- very small computation time (see Chapter 10)

The disadvantages are the requirement that the values IM, JM
be powers of 2. Also it is not possible to transfer the results

to complicated geometric boundaries.
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APPENDIX 5:

Accuracy and Consistency of the Difference Formulas

A5.,1 SBtatistical Errors of the Linear Difference

~
=

=
an

|

Approxlimatlons

A typical linear difference approximation is the approxi-

mation —
A U, (%,,% Xgi-é)s"ﬂ; (u LA xz,)rx «b)MJ (- 2% ox xz,xg,'é))t (A5-1)

This appreximation assumes that tt(x %2, slf)ris a sufficiently
smooth field, so that linear 1nterpolations are possible. For
locally homogeneous fturbulence, this approximation is certainly
correct in the statistical sense. Nevertheless, the approximation
given above can have an error at a certain point in time, which

is characterized by the following standard deviation f:

£1= L0004 (5 0 G O 0] (1523

Assuming locally isotropic turbulence, we find the following

according to Appendix 2:

1= CE G o0+ <05, o)+ 73 (ax, 407)
2 A " (A5-3)
-2 G (4% 0,) |
For meshes of equal side lengths, using (A2-40, Y41, L2) we have
273 * ' +
2= £ <o ay, [ 2 ol (4443’,0)-%(444@02] (51)
Fa
-4 dF(4440,0)- A7 (144,0)]
= 0.06¥s -/‘(sf” xw
£ = 0.253 -f-:z <> AX (45-5)

This statistiecal error therefore decreases as the mesh edge
length.‘ﬁkh,}is decreased, but only slowly according to the
power 1/3. This result is, of course, only to be applied in the
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region in which the Kolmogorov spectrum is valid according to
(4-6). Por very large mesh sizes, where %Z;?Z \strive to

constant values for homogeneous turbulence, as well as for very
small mesh separations, where the smoothing becomes noticeable
because of the molecular viscoslty, the error is probably smaller.

The result given above is therefore a pessimistic one.

If point velocities and not area averages were approximated

by arithmetic averaging according to

UA = ’HA 1

then from (4-6) we obtain:

- 4 1 -+ 7 -+
f= [3 (4173704 <% a5 07054, <e>'3¢’s,ﬂf (45-6)

~
s.—l
=
3

i.e. the averaging operation reduces the error by about a|

factor of 3 but does not change it 1n principle.

Just 1ike in the fine structure model (Chapter %.2.2.5.3),
instead of the deberministic approximation (A5-1) glven above,
one could think of a statistical approximation which has an
average value correspondlng to (A5-1). In contrast to the fine
structure model, we even have a trial solution for specifying the

standard deviatlon, given by (A5-5).

A5.2 Truncation Error

ps Orszag [96] discussed in great detail, difference
approximations lead to errors which can causé erroneous
amplitudes and phases of the solutions. These errors are
especlally large for Fourier components corresponding to large
wave numbers. The phase errors would disappear if the Galerkin

method (see Chapfer 1.5.2) were used. Deardorff [33]1 points out
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that the energy spectra of the kinetlic energy dissolved in the
grid drop off very rapidly at the maximum wavi numbers which
can be resolved (approximately according to k™), so that these
errors have only a relatively small weight (see Filgure 23).

With difference approzimations for grids with an edge length
of Ax, it is in principle impossible to represent Fourler components
with wavelengths smaller than 2-Ax [94].

m
If we assume that the average velocity filelds .| can be

represented by Taylor series expansions, then it 1s possible to
determine the truncation error of the difference formulas. The
truncation errors of the convective terms are especlally important

here. if we consilder Clartesian coordinates, we obftain for
|

example g A
g (o w')s 5% (U,-U) +£
o . (A5-7)
_ Du, DU gxl Fu, ax,?
f= BxT x, 2 7 ox3 Y, *31 + O(A"%#); /148

It seems more favorable to use the approximation of Amsden-
Harlow [3]

2’1446;474, = 3}7(@1.«#)1&{

Fe P S oy, 459

dx3 7 3

because here the truncation error does not have any second
derivative. Thls has a favorable effect on the stability
behavior. However, one disadvantage of this approximatlion is
the fact that the difference formulas do not correspond to the
conservation equations for kinetie energy, which can lead to
instabilities because of aliasing (see Chapter A5.3 and A5.4).
This type of approximation is therefore not used here, as was
done in [54, 79, 941,
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A5.2.3. _False Diffusion  _
False diffusion is discussed in [49], for example. It is
produced by the limited resolution capacity in the difference
crid for large gradlients. For example, the function y(x) has a
ramp at X, j T' 571 \

7
-

ke— Ax—l T X
In the difference grids, it 1s only possible to represent the

S
y
5

\
\n

gradient (yz—yl)/ A x as a maximum. The field y is therefore
artificially smoothed which appears as a false diffusion. This
error becomes large if the maximum gradient 1s not in the
direction of the coordinate line but along the diagonal of the
mesh. The mesh and length should therefore be parallel or per-
pendicular to the streamlines as much as possible. This

agssumption 1s satisfiled for the average flow.

A5.3. Aliasing Errors

The aliasing error is produced by nonlinear terms. It
wags flrst demonstrated by Phillips [100] for the convective
terms. Miyakoda [87] showed that it can be produced by non-
linear viscosity. This error is also discussed in [1,10,79,96,
100]. The error is based on the finite wave number resolution.
If two position dependent functions are multiplied which contain
both Fourier components with the wave numbers k = 0,1,2...,N,] é;ﬂg
then a product is produced which contains Fourier components
with k = 0,1,2,..,2N. However, only the components with k< N}
can be represented by the difference grid. The components with
a higher wave number are added to the components with the smaller
wave numbers. In this way part of the physical energy transport
from small wave numbers to large wave numbers is reversed. This
effect can lead to instabilities. One solutlon for this is to
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structure the difference formulas in such a way that they con-

tain energy according to Chapter A5.4,

A5.4. Consistency with the Physical Conservation Laws

Based on the wall adhesion condition and the periodic
boundary conditions, if there are no fleld forces and if the

viscoslities are zero, we have

Momentum congervation:

S\.{{J -2—}‘- V= 0, (=423 (A5-9)

Energy conservation:

2
/
v a(u 2 av=o, (A5-10)

where V is the total flow velume and the velocity field satis-
fies the continuity equation exactly. The different formulas
must be consistent with these physical laws and therefore we must
require that the sums over the corresponding difference approxi-
mations over all of the difference meshes also vanish,

These conservation laws apparently are satisfied for the
difference formulas of the momentum, because the convective
terms were used in thelr conservative form and therefore, for

example,
KM

F ) _-3)‘ [H ‘3/ bekmeg 2 -_3/ 4]/["’1:?:*{ X‘ﬁ]

= j (A5-11)

and the right side vanished because of u3=0. A similar statement
can be proven for the energy according to [78]. However, it must
be assumed that the continuity equation 1s also satisfied exactly

in the difference form.
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Piacsek—Williams [105] derived difference formulas for
which the requirement for energy conservation 1is not necessary.
However, in this case, the momentum is only conserved 1f the
continuity equation is satisfied. Nevertheless, the suggestions of |
Piacsek-Williams are attractive if the continuity equation is
exactly satisfiled, for example because of the iterative solution
of the Poisson Equation (6-9), because 1t is probably more
important to conserve the energy than the momentum because
of the quadratic type of stability. 1In this paper, the continulty
equation is always satilsfled to within a very small error because
of the very accurate pressure calculation. It seems that the !

formulas of Piacsek-Williams are not required.

A5.5,. Numerical Errors

As is well known, numerical errors are produced because
of the limited number of decimal or dual locations which are
available in the computer for representing floating decimal |
numbers. This limited number of places 1s especlally apparent
in the calculation of the difference of two approximately equal

numbers. For example, for three decimal places we have
0.164E2 - 0,16382 = 0.12780 |

The difference is only accurate to one place 1n the example.
This effect is known for the calculation of differences, but
is usually ignhored for the summation of a very large number of

numbers having the same order of magnitude 1n a sum accumulator.

For example, if a 3. floating point installation is used to
represent the addition of 10,000 numbers A(I) having the order
of magnitude of 1. according to the prescription FORTRAN:

196



S - 0 . !

i

DO 1 T = 1,10000
18 = S#(1), |

then after 1,000 summations, the intermediate result in S
differs by 3 powers of ten from the A(I), and the sum 5 no

longer changes because of
0.100E4 + O.1E1 = O.IOOEh%

Such numerical errors can be kept small if the following

rules are observed.

Difference formation:

.
l_l
Wl
'_I

Rule 1:

Transform the numbers such that their average value 1s equal

to zero.

Sum formation:

Rule 2:
When sum terms having different orders of magnitude are
summed in an accumulator, the sum must first be taken over the

smallest order of magnitude.

Rule 3:

When the sum of many numbers having the same order of
magnitude is taken, as many partiallsums as possible should be
formed, and the sum of them is then formed. The summation given

above 1s better programmed as follows:
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[E1% & Ve l
| |

D01 I=1,100

s1 = O |
D2 J=1, 100 ]
2 81 = SLA(J+(I-1)%100)|
S0 = SO0+451 |

Rule 1 is considered by means of a Galileo transformation
{see Chapter 7.2). The other rules have been taken into account

in the programming.

e
I_J
A}
Mo

APPENDIX 6:

Stabllity of the Difference Formulas

A6.1. Linear Stability Analysis

In this chapter we will establish stability eriteria for
the linearized difference formulas.

In addition to the formulas used

Type a) According to (6-4), jump method in time,
central difference gquotients for convective

terms, tTime delayed diffusion terms

Type b) According to (5-100, 6-20, 24), Euler method
in the time "upwind" differences for the
convection terms
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another possible difference formula which has often been recommended
[42, 44, 112] is investigated.

Type ¢) Jump method in time, central difference formulas
for the convective terms and DuFort-Frankel method
[A11] for the diffusion terms

It ig found that this method is worse than the other methods

for small viscosities for more than one dimension.

In addition we investigated the possibility of using "upwind"
differences for the convective terms for Type a) as well. We found
that the method would then become unstable. Therefore we did not
invesftigate the detaills.

The linearization refers tc the following:|
- Assumption of constant convectlon velocities { V;'V}‘U¢}|

- Assumption of constant viscosities u

- Pressure gradients and field forces are lghored

- Decrease . | of boundary conditions in all directions

In addition, the momentum equations are simplified so they
become uncoupled. This uncoupling is exactly valid for Cartesian
coordinates. In addition, equldlistant meshes and isotropic
viscosities are assumed. In this way we obtain the following
linearized equations (y stands for one of the velocity components Z_li3
vlnvr:"’»f}or the kinetlic energy Vﬁ ', respectively):

g m4s n-A
Type 8.) €13 k= 7‘.:,{1 k I L h-4 l (AG—l)
7 At K, = D, l
i
nka n
Type b) Yo R ek . K n_ .D;' ! (A6-2)
VX3 b |
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Type ¢) H(,J,&. dogk “ _ D ?
256 *+ K <

where

", ti:z"‘f.!.f [ 'dy‘:"u: YL;J*!' £ - 3:. J"fﬁ. B -
Ko™ Y & Zax M ATl & gt Lotk g
k" - Vx + , \/F’l .. yi‘;J‘; 8.-';::4-3" -+ VX /V‘xl . y‘-*lfJ.lA '7¢'IJ'J A
b 2 y.5% 2 AX
" ™ L] L]
Vof + qu/ 36,.}'; k-Joink + V- /V’f’! b AN ok
2 TAY 2 #Av
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M _
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-r‘o‘p‘ w"
+ JHJ:ﬁ‘M -2 ﬁu.ink *?tu.ﬁ*"’ + Gn};&ﬁ' y‘:-u A—J
% Re Y-S

D /U{ j“"‘)ﬂ!’! (y“!dfk ;l:J,"/“'?c-—'ﬁJ,

y‘h.l“’"’:’l (#lu!f& +J‘JJ."‘)“' c‘?'l.-,_)"‘( ﬁ ‘U'

+ A‘f" ( Ve ”r )
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The notation for the "upwind" differences according to (A6~5) /154
corresponds to the suggestion of Kirsch {7217.

The linear homogeneous difference equations can be represented

as follows in matrix form
#A " h-4
’trc',f,& = ..é:f ’ K‘,!;g + _/3_'.2 Y!-'ijk

D ———

(A6-9)

where

T/
Y‘.r,)'. R~ [yu'.j.ﬁ; 9;’-—4,5,*5 7£'+J,J;&j 7"1.}"4{“2. ?t',jf-.»{,ﬁ)' jru; .&-4)' y(:.j' ‘M} !;l

The vectors Al, A2 which are made up of seven elements each are

given in Table 8§ for the various formula types. These difference

equations have the general solution

y "’,j’; .‘.’ = (//L',J,A e)ff{ﬂ(; [&4 (i’_f)A)(.* &z (J"_J)AY';Ag {&LA)AT]
£ o ‘

and kl, k2, k3 are arbltrary weight numbers. For the vector)ﬂ.zb,

because of .{£<XI
R S

(86-10)

= coslx)+ £ s:‘ncx)f we have:
h =" | | (A6-11)
Y,_-l WL\ UC,J';ﬁ ’ —E:— i
£ = {/’J L 3*G ;£ tG GG LS G Tk LG, 4 $3#6y ]:/
S,z son(h,an); S, = sinlRyav); Sy siulhyat) | (86-12)

I

2
C, = cos (R,4%); C, = cos (Roap),; C; = cos (4 av)
|
| | (A6-13)
§itrcit=A - cag23

From (A6-9) we therefore find an equation for the variation
of the amplitude U with the time step n:
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n+Aa h . N ‘

"'IJ.J * ~ A4 4 = U‘-'Ja‘ k .f' A2 '_E_ U‘.fJ:k I‘ (As"lu)
According to Richtmyer [111] the variation of the / 155
amplitudes for one step to the next time step n can be
described by oy
e,k _ '-rJ k
.. Ab-1
‘-Jf‘- L.Jf’( ( 5)
with the amplification matrix
oo [ ALE |
= |
4 : | (A6-16)
B '2(A¢4+£-Qu /Lz*ﬁ %z |
A .0

The real constants All’ Bll’ AlE’ BlE are given in Table 9 for

the various formula types.

The eigenvalues of this amplification matrix G are

T

. ™ - | (a6-17)
2.
42 = A, * 4 B,ui' ‘d(Aﬂe’_c: 34,«) +Aﬂ,t£34

The stability criterion according to Neumann [110, 111]
then results from the requirement that the amplitudes of the
perturbations {}” of the solution cannot increase when the
time step n is enlarged. - From this we obtain the following

necessary condition

[ 2,1 £ 4 (=42 (46-18)
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This condition 1s also sufficient 1f G is equal to 1ts hermitic
conjugate term [110], which is assumed as a rule [110, 111, 73,
1407].

Just like the requirement (A6-18), of course we have
| A 4,2 s (A6-19)

where

(A6-20)

Ja+ibl= Va%bl ; .Q,b. real

F
From this we can determine the maximum permissible time step
At, as will be done in the followlng sections for the individual
difference formula types.

A6.1.3. Results for the Permissible Time Step At

The permissible time step can only be specifled in explicit
algebraic form for the extreme cases of negligible diffusion or

negligible convection:

Case a) Pure convection QM==0,H$D?”

The elgenvaidues },d here have the following values

Y = Vi Ve V. Vi V. 2
‘ /\412 =4 Af TAX 44 »rd"o sz"i' T Sg /[ ﬂ'éz( 'f:?SZ"L < 53) !
ﬂrom.fkﬁ : L it follows that

2 [ Vx ve o ) £
o (S r 25y Yoo ) 4a
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The minimum 4t/ for

S, = Sc'Jh(I'fw} ; 31-‘: S’l'gk(v‘(), SS:Jf'jh(Vd)]
7

which results from this is

|
| IVie ) Vel Ivel Y (a6-21)
at, < ( > T Tvay t Ta /)

Case b) Pure diffusion ( V,=¥=V =0, rs}}dr)j

M= ha -I/4+.'Z/uaf [Zz;z (CJ—A)fi?;(Cx-d)+ zz:".‘: (C;-«r) ~ 7’:-5 (({?ul’*d:?u‘ 4_.-3_-5%.5__

The magnitudes of these eigenvalues have their maximum at

C,=C;=C5=-1,85=0; and we obtain the following permissible time

~

step -
d 4 At Fyeerdier T 600
‘f/“ Ax? +* Ayt At? 2+

mED £

Case ¢) Arbitrary parameter values

For the general case, it is necessary to determine fthe
permissible time step At numeriecally. For this, an optimization
program is used which operates according to the evolution strategy
[60]. The independent variables C,, C,, C,, I,, I,, I, I) where

1° Y22 Y32 “1° “22 732 74
-8 Gt s AMCT 220
I,€{-4,#4} , c=128%
are varied (Iu is the sign in front of the square root in (A6-17))

so that a target functicn ZF is minimized.
By means of interval containment, and with a relative

aceuracy of 10_4, ZF produces the At20! so that the following
relationship holds for the variables specified above

[Acat)]éa, 1) (atre)]>4 ]
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The numerically determined permissible At is a function

of 10 parameters:
At= 41—(/4, V., Vrdk Tay AT, v d:?"”os"l’” (A6-23)

Figure 12 shows a numerical value for

A o
stz at | Vi, Vil 10, Vi [0, 0.42:70.0.5; 005,10, q,o)l (A6-24)

as a function of viscosity p for three values of the convection

velocity VX = 10,30,50. For comparison purposes we also show

At,:zd-[af (0, Vi, U 10, V}, 142, 04,2:4059@5‘40 oa) (A6-25)
as well as st i 0, 9 ¢ 9y ﬂ.ﬂf}ﬁ.ﬂ.{‘,ﬂ.a{’,ﬁ d)}
DAl et w) \
A{_‘z:Af‘ + 1Ay AT 0 0.0, 0.4250.05 0.05 404900 \(A6—26)
A ! 7 J RS,
[ I 4 JI"Y“@W \
ar ("A‘ff d’l"‘ -Z»r" ‘ Y

Af ilS the minimum of the perm1551b1e resulting time steps which

result for pure convection (AtK and pure diffusion (a4
respectively. At2 is the asymptote which results for pure diffu-
sion corresponding to a viscosity which has been enlarged so much
that At2 takes on the same value for u = 0 as &tK. These compari-

son values can be calculated algebraically according to (A6-21,22).
From Figure 12 we can see the following:

a) The permissible time step decreases with increasing

viscosity u and inecreasing convection vellocity V .
X

b) The permissible time step At is smaller than the value

At At for the limiting cases a and b considered above.

K? D

¢) The function At2 is a conservative assumption for the

permissible time step At.
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The practical calculations are therefore carried out by a

time step determined by At As an additional safety factor,

5
it is reduced by a factor which is input, which typically has the

value of 0.5. /158

For this one step method, the amplification matrix G is re-
duced to a scalar value. The eigenvalue is

A= at [(G0 (280, (6o0) (el
+ (CS 4) (M! —“f‘) V'r ]qf’ /“ (Jo.(f ;u‘,) ,

S,Q"l{ﬁ" "Sz.-w'TV:T,-Ss,_,( -~ 'fdf)_}

The magnitude of the eigenvalue has a maximum for ‘T}Af] and

for C

l=02=c3=-1; Sl=82=53=0. The permissible time step is
therefore
' Vi Vel IV-rf a P (fo tdya,
At'{[a f Ay T e J(.]" %ﬁ -r*av art X@Pftg ((‘% -27)

This result was derived in a different way by Krause [73, T47.
Figure 13 .shows At as a function of p for the same parameter
values as in (A6-24). The functions Atl, At also shown for
comparison purposes according to (A6-25, 26) clearly show that
for these difference formulas, the permissible time step At can
take on the same value as for Type a, corresponding to pure
convection. For pure diffusion, its value can be twice as large.
This means that the time step according to (A6-26) is also
conservative in this case, i.e. for the Integration of the energy
equation (5-100).
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In this case as well as for Type a, the permissible time
step At cannot be calculated algebraically for the general case.
For pure convection, we find the same permissible time step Atk
as for Type a, according to (A6-21). For pure diffusion
(V=b"%‘9f'“ﬂ%he magnitudes of the elgenvalues have a maximum
forC-, _cje{ar-m'} HI _S _s —O

. AG6-28
[Aci=a 2 A'é( 4,1, ) E ( )
]Al(-/f e A_:z ,,,-::,?1 df (-4Lfor' Ai>0.‘,
A 2/"4{( T ) o

that is, for pure diffusion the differfnce formulas according |
to Du Fort Frankel are always stable (this result corresponds
to the three-dimensional generalization of the data in [1117).

/159

For the general case of simultaneous convection and diffusion,

the permisaible time step must be calculated numerically as dis-

cussed in Chapter 6.1.3.1. Figure 184 shows the calculated results

for the parameter values corresponding to (A6-24). For comparison

purposes, we also show the functions At,, At, (A6-25,26). TFrom

this we can see the remarkable result:that for peositive viscosifties

u (not too large), the permissible time step At is considerably
smaller (by a factor of 1/2 to 1/3 here) than for the Type a
difference formulas. For small viscosities p , 1t even goes
below the otherwise conservative functlon Atz. One would expect
that At would take on a minimum for pure convection, as was
assumed 1n [112], for example. PFigure 15 showed that this
limiting value is only exceeded for viscosities p which are large
compared withzjﬁ.
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H/xf [ Viol /vfr/ Rl
/“ ( —mr 7 )( axt -r"dpt'! m'*- . (A6=29)

In this paper, however, the viscosity p is small and the Du Fort-

Frankel method is not suitable.

In the followlng we will show that thls statement is
directly related to the three dimensionality, because it can be

P

P _
proven that, for the one-dimensional case Z”?&}:"“ ; f:oo)l‘

At doeg indeed take on a minimum for pu = 0.

In the one-~dimensional case, the eigenvalues.of the matrix
. ' . 2
g are: o = AC,- £ 8BS, ¢ V(AC,—}, 8S, )t~ A*
/72 /{‘f'A

where

2 .at v
As—“;—x;i—,»o , 8= at Il

ax 7

. oax
Since we wish to show that ATﬁ“ﬁITl is permissible, we set B=1.
The expression under the square root operator can be transformed

as follows:
(AC, - i8S )t a-At= AR(CHA) -8}~ L 28,C,

Because of (A6-13) we have:

(AC—i S Vra-Al= CC- AS}’"\
The root can be taken and the eigenvalues have the following
values for B = 1

A= Co- 58,
2, = A=
27 g +¢A (CJ+’€"S”)
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IA‘!= C:,Lr&:" :

{ = /I‘A 2 2 A- A (A6-30)
,{J'! /14,4 C’\’f% :4*,4 é/f

Here B = 1 is permissible, i.e. at=ax/fV,//is a permissible time

step for arbitrary viscosity /ﬁt>°f

In the two-dimensional case, the elgenvalues are

AC, #+4:Co -4 (8,548 5 ) 1/[4; Ay Co- i (B,5,+ 8,5, )] % 4~ At \

A= 4+ A , N
_ 2at | '
where Ax=—£§,‘L Azs—z‘% Az A rA,
4+ ¥k
Bdgﬁdlxll” Bls_éi_.i.ﬂ BE BJfBL‘

If the time step at= ﬁﬂéf “4’ is to be permissible for

pure convection in this case as well, then we must have B = 1.
In contrast to the one-dimensional case, the expression under
the square root operator cannot be converted into a quadratic
form, and we cannot show that /A,,/«/. This is not a proof for
the faet that fAﬁg54iand that the time step given above is too
large. This is proven by the numerical result.. For example
if we assume Al=1/2, A2=2, B1l=0.7, B2=0.3, we find that the
maximum magnitude of the elgenvalue for ¢;=0. 4 Ch%(39| is
]}/ = 1.0875 . This example shows that the condition.lN‘ﬁl is
.not always satisfied in the two-dimensional case for At =
[ Mo o2
of the permissible t;me steps for arbitrary viscosities u.

Conseguently this time step is not the minimum
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Because of the zmall viscosities which occcur for the simulation
of three-dimensional turbulent flows, 1t 1is not recommended
that the Du Fort-Frankel method be used.

A6.2. The Heuristic Nonlinear Stability Analysis according
to Hirt

Hirt [57] gave a heuristic derivation of the fact that non-
linear instabillties are based on truncation errors of the non-
linear terms, which are made up of products having the form

a(x *%":—Hl

The factor a(x) i1s a function of the velocities and of the
grid. For example,see the example in {(A5-T7). In other words
the truncation errops appear as additional diffusion terms
with variable viscositles a{x). If a(x) is a suffilciently / 161

smooth function, it can be linearized and stability criteria
for this case can be derived as was done in A6.1. In this way

ohe obtains the results of the type

/a S o W/At K /as—/a ax au/ax; (A6-31)

where ohf% are numerical values. Hirt [57] derives such
eriteria only for the two-dimensional one-step method. In this
paper we attempted to also derive stablility criteria of this
type for nonlinear terms for the three-dimensional two-step

distant formulas used. We encountered the following problems:

a) The truncatlon errors differ depending on whether
the reference point of the Taylor series expansilon 1s
the central location point for the time step no or
for the time step nl (according to Chapter 6.2.1).
We could not decide which was the "correct" reference

poin%, because no exact theory 1s available.
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b} The resulting factors a(x) which result are so complex,

that no practical stability criteria can be derived.

For these reasons we did not pursue the stability analysis
further, but only used the criteria which were derived from

the linearized theory as well as additlonal safety factors

discussed in Chapter A6,1.3.1. /162
APPENDIX
Consideration of Non-Egqual Meshes in the Source Term of the
Pine Structure Energy Equation
After conclusion of the theory discussed in Chapters 1-8,
the first test calculations which had highly unequal meshes
AX, B> AXg V7 A% (A7-1)

resulted in velocity fields which did not have the expected
random structure. Instead they were definitely regular. This
was expressed by the fact that the velocity fields only varied

as a function of X4 with long wave, large amplitude oscillations.

They were almost constant as a function of X5 and x3, that is:

< A{ agkax.)2>>> {Ruloar> 2 L (9u/PxF) | (a1-2)

We found that this effect could be explained because of the
unequalness of the mesh edge lengths and its effect on the
energy equation. Therefore, we were able to remove 1t in a

corresponding way:

The source term P in (5-44) is proportional to a difference
form of the square of the deforpation velocity D132= which con-
sists of 9 sum terms { Pri1c51 »? ‘(however, here we have (Dn3pj3)2= i
( Oprs1207 f’. Because of the unequal mesh edge lengths, the time
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averages of the sum terms are unequal. For locally isotropic
turbulence with the Kolmogorov spectrum, ((bp.-:c;';)z}Eapproximately
varies according to (A3-21) and approximately proportional to

Ax: M?’ or Apvlya/ . Therefore, in the expression for the ratio
(A7=1) of the mesﬂ edge lengths, for example<ﬁﬁ§ >iis much smaller
thanq<£B§> , 1.e. a variation of the velocity field in the X
direction results in a lower contribution to the source term P
than a variation in the x3 direction., Therefore, at all locations
where by chance there is a large gradient layfékgf , the energy "537[
and therefore the viscosity p are large. At these points, the
velocity fleld is rapidly smooth again. However, this is nct the
case for locations at which P¥®5[1s large, and this is why the
result (A7-2) is produced. In order to remove this effect, the
individual sum terms ( D;t1'tj! )1fwere multiplied by the weights

|

£ 'De51> |

1 :
< Dﬂjqb)b
which can be calculated for locally isotroplc turbulence with

(AT7-3)

the Kolmogorov spectrum using the programs gilven in Appendix 2. /163
After multiplying with these weights, the time average of all

the sum terms will be of the same slze 1if this restriction is
observed. With the incorporation of this correction (A7-3), the
calculated velocity fields take on the expected random sfructure
which will be discussed in Chapter 10.

APPENDIX 8§

Program tests for Laminar Flows

A8.1. Starting Flow
A starting flow is calculated which is obtained for
constant viscosity v (laminar) if a pressure gradient PX=2

accelerates this fluid in the axial direction starting at the
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time t = 0, where u(t=0)=0. The solutions of the differencing
method are compared with the "exact'" solutions calculated according
to the program ANLAUF [36] from serieg "expansion'". The calculations

are carried out for an annulus with

R1=0.25, R2=1.25, v = 1

Three cases are considered:

Case a) At =0.,001, Ar = 1/8 (=const )i

]

0.001,
{0.1, 0,1, 0.13, 0.17, 0.17, 0.13,0.1, 0.1 }

1

Case b) At
AT

Case ¢) a4t = 0.00025, ar = 1/16 (=const)k

Table 10 shows the deviations £ between the exact solution and
the difference method solution at various times. ¢] are|the devia-
tions in the mesh at the inner wall (the largest deviations ocecur
there) and €5 are the deviations at r = (R1+R2)/2. The data
are presented for O<t'5(mao/2 At the time t = 0.40 the
maximum acceleration only amounts to 0.062 instead of 2 at[
the beginning, and therefore at this time the solution has come

quite close to the stationary state.

FProm Table 10 it can be seen that by using non-equldistant
meshes, there is only a slight reduction of the error for very
small times at the wall mesh. However, this still leaves open
the possibility that a finer resolution for representing the
turbulent fields, which fluctuate greatly in the wvicinity of
the wall, could be advantageous.
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A8.2., Flow Between Rotating Cylinders

As a second laminar test problem we consider the statlonary
flow between two concentric rotating cylinders, which rotate at
different rotation rates aaf(inside cylinder) and ®i! (outside).
For this case we have the exact solution [120]:

4 1 2 RAI‘Rl‘
T = - -
vy 1) = s [-r(%m w, R4*) e (wy-w, )

Since the solution 1s in the center of the axial flow,
it was investigated at the same time as problem A8.1 was investi-
gated. For &ffzug_-i, '0?(4‘): is a linear function of the radius r
which is obtained exactly by numerical methods. In addition to
the azimuth diffusion terms, this example also tests the calcu-
lation of the pressure. Because of the centrifugal acceleration,

we have the pressure distribution
s

p)= R}{' 'u‘,‘/'r ot + Pu,
For V‘Uf‘ ;“’z. ;—.wj  we have
per= L La-RA] 4 P,

This solution was reproduced with a relative error of < 1%o0 for

KM=8 meshes in the radial direction using the difference method.

A8.3 Two~Dimensional Taylor-Green Vortex

For the initial conditions

Qﬂo > — cos(Xe) Scu(Xe) ; 11;’"- Feon (X)) car () N 14_,’ =0

and if no external forces are present, we have the following
exact solution [94, 131, 102] for the case of periodic boundary

conditions:
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U= 4’ exp (-2vt) i

|
U = 2% exp (vt |
1-‘3 =

|
0 - X
~ 4 [cos (ax)+ cos(2x) [ - exp ('*"’i)i

>
U}

This test problem was also used by Orszag [94]f and Chorin [217.
Table 11 shows the errors of the velocity components for
v=0.05 . at= a.ogygji
Column I contains the errors of the numerical solution, which

AX = AX, = T ¢ ;
was calculated using the described difference method. Column II

has| the errors calculated by Orszag for the same problem. The

errors for the method used by Chorin were higher than those of

Orszag by several powers of ten. Column IIT shows the factor by

which the errors inerease when the mesh size is multiplied by

four. Table 11 shows that the method used here 1s much more

accurate for small times than the method used by Orszag. The /166
reason for this 1s the implicit calculation of the pressure o

at the time n2 according to (6-4). Theoretically, for an

accuracy of order zu‘g when Ax;ls multiplied by four, the error
should increase by a factor of 16. This is approximately verified

by Column IIT of Table 11 for the present difference method.
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) Coa {4 -Cx)
fad-tm, -
a qu ? v 1. /% | 0.5
L-Diffusion
**)
ag ? 1 3.33 | % fe | 1.67 -
L (+c,, V]
kL :
¥) The values were derived from the data of Wieghardt [99].
Ay 82 a - - 2' 21
##%) gflizooi:uil:he constants &' °7 81 follows _from a, -3k agtag-k a7aa/a2 =‘

LELD First number for free jet from a rectangular nozzle;
gsecond for circular nozzgle.

=" 7
REXR) X'E;'[CM*CV(LIEJ}, CH=o.o.ssl C, =22. , 7=¢.r
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TABLE 2. ACCORDING TO Ng-SPALDING (1972): /187
{(Varliation of the caleculated target values
for variation of one constant each by 5% [91].)

i
Varied constant IAverage variation of the
1target values in percent
l
L-Production’ al} 4.9
{E'> - Dissipation a, 3.9
L- t . :
Sinlk . 8-2 a6 3.1
Var. of the L-Sink] a 1.2
with location z.] Cw 0.7
L-Diffusion a7 * ag ‘0.5
n
a ‘
7 0.4
(E') - Diffusion 8y o.h
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Kolmogorov - constant o

a) Experimental findings

TABLE 3 ¥|

/188

Authors)| Ref. | Yeari Flow type} ;z%%g%?gih *A$:§§§?J
Grant et al 46 |1962 | Tidal flow 1,22 - 1,81 1,44
Gibson 47 1963 Free ;jetl 1,57 - 1,62 1,60
Pond et al. 1ol 1963 Wind ever?mvavesl 10% 1,41
Comte-Bellot 18 |1965 | Flat plate flow 1,55
Pagquin,Pond 106 1971 Wind + 0,28 1,58
Wyngaard, Pao 142 1971 WEEEEJEY?ILJEh?i + 0,06 1,7
ground: height -
5,66 - 22,6
Boston, Burling 17 1972 " b m + 0.06 1,56
b) Theoretical predictionsl
Kraichnan €9 1965 - - 1,77
Kraichnan To 1966 - - 1,5
c) Re&gﬂmqu%tion\
Pao 103 | 1965 - - 1,5
Lilly Bo | 1966 - - 1,41
Rotta 115 }1972 - - 1,44
This paper - - - - 1,5

¥ Translatcor's note:

Commas in numbers represent

decimal poilnts.|
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]

FUNCTION D1C(AL1,A2,A3,%51,%52]

B D T

COMMON/ CWORK S YL{LCO), YZE100),¥3(100),Z111000,22C100),231100)

CCMMON/NNNNNNZ NN
LOGICAL FIRST
DR=1.r3.
N=zAMAXT(1,. .A2) *NN
N2=MAXD (10, MINDL 95, 24N )]
N=AMAK] {1, 43} *NN
N3=MAXOLLID,MINC{ 934N} }
H2=2,*%A2/N2
H3=A3I /NI
N2=N2#}
N3=N3+1
FIRST=
TZ2=—A2
DD 2 12=1,N2
IFIFIRSTIGUTODS
TFLABSIXS2-T2). 6T L E- 1N IGOTOS
Y20T21=(AZ2=ABS{T2I1*N, 225%AT*42, 8606 H05465E0
GOTD &
CONTINUE
KE1Z2= K51 *xS1
K2T2eiX52-T2)ed2
AT2=42-ABSIT2)
T3an,
D0 3 13=]1,N3
T3T3=T3+713 .
RuX412eX2T2+T3T3
YII31=(A3=T31 *AT29{R¥PDR)*[ 1. ~X512/{4s*R))
3 T3I=sTI+H3
CALL QS5F(HA, ¥3,73,N3}
¥Y20121=23IN3}
CONTINUE
2 T2=T2+H2
CALL QSF{H2,Y2,22.N2})
D1=2.*22{N2)/{AZPAZ2*AT*AT}
RETURN
ENT)

EUKNCT D2(A1,42,A3,X51,%X52)
COMMONS CHORKY YLI1OO0 Fy Y2100 Ty ¥31003 210100, Z20100),2311€0)

COMMON/HNNNNNZ/NN -
DR3a1./3.

DREX=8a /3.

DRI4N=2T, 100,
NI=MAXO (10 MINC{O9yTFIX{HN®AMAX]1(laeAL)®2)))
N3zMARD{LO,MINCI IO IFTKINN®AMAXL(L1uyAD) D)}
Hl=2,+41/N]

Nl=N1+]l

H3=A2/N]

K3=N3+1

Ti= A1

DO 1 11l=s]l.N1

RI={TE+AS1)I¥*2+X52#X52

Ti=0,

IF(RI.LTJ1.,E-10)GOY0 21

00 3 I3=1,N3
R=FL+TI*TI

Fal.
[F{R.GT 14 E~1N)F=],~

{ABSIX51.6T, 1. E~10)

(1XS1+T1 002/ {4, R}

:22

3

21
1

¥Y3{I3)= (AI-TI)*R*4DR I&F

T3=T3+H3

CALL QSF{H3,Y3,23,N3)

GoTn 22

Z3IN3 )= QRIHDEAI*ADRAS

YL(I1}m Z3(N3)*[AL-ABS{TY))

T1=Tl4Hl

CALL QSFIML+YLlaZ1lsN1D

N2=2. %L1 INL)/TAT*ALI*A3#AT)

RETURN

END

FUNCTION C3{AY,A2,A3,X51,X521

COMMON/OWORK Y/ YLURNG)» YZUL00 ) ¥3L1001,2110100) 2211000 ,230400)
COMMON/WHENNNNS KN

DRA=14/3.

NARA=B, /3.

NRS&N=9, f40,

NI=MAXG (10 MINGI99, TFININN®AMAXIC 1AL D)}

NA=MAXOL Ly MING 99 4 IFIKENNCAMARL 1 a AZY DR

N3=MAXO{ 10 yRINOU I, IFIXINN®AMAXL (Lo ADDY D)

H1=A1/NL
NI=KN1+1
H2=A2 /N2
N2=N2+1
H3=a3/N3
N3=N1+]
T1=-A1/2.

00 1 [1=1,M1
T2= a2/2.
RI={T1+X51}*%2
FXx&1=R}

DO 2 I2=1,N2
T3=0,
RZ=R1+(T2+X52) %2
IFIR2.LT-1E-10)
DO 3 I3=1,N2
R=R2+T2%T73
Fal,
TFIRJGTALE-1Q) Fala=FXS31/(44*R}
Y313 =(A3-TI)eRekDRINE
T3=T3+H]

Call QSFIH3,Y3,13,N31
¥Y2i12)=I3iN3}

GOTO 2

Y2812V =0R94L0#A3%NRAT
T2=72¢H2

CaLL QSF{HZ2,v2,12,N21}
YILI1 a2 2¢N2Y

T1=T1+H1

Catl QS5F(HI+Y1,4214N1)
D3=2,*I1iNLkI/AD

RETURN

END

EUNCTION DG 1A),A2 p A3+ XS51,252}
COMMON/CWORK/ YLULOT 1 ¥2{ 10N ¥30100) 421 (100} 42211003 ,23(1001)
COMMONS NNNKNHS NN

R=xstexs?
R=zR *R

ML =)
TVINY DD,

A

2e1=x 'p

STVYNAINI HHL J0 NOILVHDELNI TVITHHNWAN

GnTo 21

glo. e ¥

T Continued on next page

‘f HILVL

LOAHTIA O£ SWVHDOHJENS NVHLI04H

| AT/
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TABLE 4 (CONTINUED})

999

IF(R. LTel+E-101G0OTO99%
DR3a2,/ 3.

N1=MAXO(13, MINCI99,IFTXINNT AMAXI{ e s ALDD)]
NZaMAXD{1G MINO(GO ,TFTX(NN®AMAXL (1.4A2)) )}
N3=MAXOLLOy MINOL 9T, IF I X(NNPAMAXLIC 1esa3)31)
HM1=41/N}

N1=N1+}

H2=p2 /N2

N2=N2+1

H3=A3 /N2

N3=NI+]

T1e-0.5%H1

00 L Il=1,N]

T2=-N.5%H2

RYIx=1T1eXS1)

R12=R|*R]

DO 2 12=1,.N2

L

R2=T24X%52

R13=R12+R 2R 2

RZ=RI*R2

00 3 13=1.:N3

R=R]13+T3*T3

¥YILI31a(R2 /R**QRI)*(A3-T3I)
TI=T24+H)

CALL QSFI{HI,;¥3,23,N1)
¥20121=23{N3}

T2=T2+H2

CALL QSFIH2,Y2,22,4N2}
YLOFR)=22IN2)

Ti=Ti4H1

CALL QSFUH1,Y1,21,N1)}
CONTINUE

Da=~0.5%T1(N1) /A3

RETURN

END

FUNCTION DS(A1,AZ2,434X51,X52)
COMMON/CHDRK/ YL (LOD 1+ ¥ 20100 T,¥301001,211100),22¢1003,231106)

COMMON/NNNNNNS NN

DATA DR3IS0.666600T/
NL=MAXGL{1N  HINC(IO yIFIN{NN"AMAXL (1asAL L] })
K51=45%A1

X52=A2

ITiNL)=0.

R=X51¥X52

B=RA%R

IFIRaLT.14E-10) GOTO 959
HI=MAXDT 10y MINDLGO o TF TR {NN*AMANL{ 1. ATID}}
His 2.¢481/N1

Ml=N]l+1

H3s A3SND

N3=N3e}

Ti=-al

X520= %82+ 552

Do 1 Il=1,W]

T3=n,

As AT-ABSITLI

Bs Tlex5l

BZ=ReR+%2]

DO 3 [3=1,N3

945

YATE30= A¥(AI-TI)eB8eXS2/(0B2+TI4TIIwVDR]T
Ti=TaeH?

CALL OSF{H3,;T3,Z3,N3)

YItI1)=23iN3)

Ti=T]+HL

CALL Q5FiH1:Y1yZ1sN1}

DE== SkZLINLIF{AL®AL>A3*A])

RETURN

END

| 56T/
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TABLE 5.

3 NEHL  H2 W3, X1, %2)
REALXC LT/~ a3T5,=eA3T5 pwa LAL1328,  15625E=1, ,9765625E~3,4.078125
153.220215+2.390625,14 807861, 1.000488/
DU=1./0.T257
DOn AL &SK(HZHEDUEHIA *DUI & [0, T25T#0. 66666666TED)
CU=z XleX1eXZ*X2 .
L TFIDULGYe s ) DU= {1.=X1%RL7 (4, %001 ) #0US*0,21333333E
Q= DO/LDN+DUY
Pla x1exl1*Q
P2e x2%X2+Q
Pi= (l.-H3)
Paaz P3epIeQ
S Ph= (1e-M1)
Phx PL*P4EQ
$53 (L. H2} . .
PS= TP59P5#Q
Pl= P1/(1,+ (X(S61%PLIk%2)
P22 P2/00.+ INITINP2Ywe2):
P3z P3/11.+ (X(BI®PI}*2)
Pic Péfilov LX(9)%Pe)2e2)
P5a PS/11.+(X(10)eP5Ive2)
BrAMINI {DU/DO,160. )
Bz DUSDOREXP(-BI+X(11%P 1o X{2)0P24X{ 3V AP I4X1 4 }¥PLLNIT)*PS
Cl1N=R

FORTRAN SUBPROGRAM FOR APPROXIMATE CALCULATION OF THE
INTEGRALS 4%, « =

1,

Q= DOZLDT+0u)
Pl= Xiwxleg
P2a X2¥x2%0
PI= (1. HI)
Pz PIepIMQ
Paw (1e-H1)
P4z PLo P
FS= {1e-H2)
PS= PSeP5+Q
Pl= Plstlat
P2z P2/l1les

2, ««.5 5

(XIGI*PLIee2)
{X(T)oP2)%nZ}

Pis P3, (1.+ (X[B}®PI)weZ)

Pas Pey/{las LX(9)4PEYHRZ)

PS= PSS (1. + X1 VEPSI¥e2)

B=AMINLIOU/DD, 1604

Be DU+DOSCXP (- BI+X{LISPT#A(2 V9P 24 XT3 #P 34 X( 4)¥PA XIS #PS
nIN=B

N3=NIN

RETURN

END

EUNCTION  D&NiH1,H2,H3, X1, %2}

RERL K;QDIQ.abQIﬁl‘19.\25.1l.lTl1#.2.078125|l.3“951¢.n-.6953125
1009990234,/

DI1=DIN A=K1*X2

RFTURN [FIARSIBILLT ELE-1") GOTO 999

END = we®  CC0ha®XI11®,G10020 1 ¢XU20%, 51902+ X1I10ALID)
FUNCTION N2MTHL H2 M3 XT1yX2} b oZCUHEsXALT#X1 )P 424[H2ZAR12 #K2 1020 (XE2VOHIIHE2) V0. 64486656TED
RER (LD 7=e 20BN tbTyms 2012514 ALOBTTT y=s 29508584, L 484044F =1, Pl= (1. #1) :
11.8129864+3425+1.81272560,521875:42/ pl=  RL*P1

DRl { 3375 ¢H19#, FEBOEETEN) #¥ 2. [4D541EC Plz PLAt1.+(X(8 14PLY®®?)
T 4k RHIed, GAEEL6TFOIFAZ_140541ENPe, 4472 P2z L, -H2)

Dus  X1eXleX2%X2 p2= P2eP2

TFIDU.GTA0.) OUa 41.-X1#X1704,%DU) 140U+, 3232333EC p2e PZ/Ulad{X{51¢P2)%%2)

Q= DNALDOHOUE P33 (la-H3)

Bls RI1%X1%0 iz P3epd

P2n AZeX22Q Piz PIf{Ll.¢iX{DIRPII**2)

P3= (1. HI} Pl= KI7TI*PLeX{BI4P24X(Q1£P]

Pi» P3®pP3ag iz XFA2ELB4PL)

Pom 11,-HL) 99¢ NeN= -0.13761*E

Pédn PARPLAD De=0" M

PSa [l. H2) , RETURS

PEx PHEPSE( - 8D

Ple PY/{1.4 IXI6}P1IRRZY EUNCYINN  OSN (H14H2,H3, X1,%2}

i3 PP/{let (ALTI®P2)®%2} WEAL W (5075, 6h2E 2216043760534 1a5L1715,12. 5742243762945, 14y
PIr P01, 4 EX{BI¥DAYRE2) 1 ELNTUEM - u151123 4077

Pax PA/(let (KISHEPRY®R2) R=N1*)i2

Ptr PS/LL +{X{1D}¥PSIvNZY IFIABLIBI.LT.1.F-1N) GOTO 999

BaAMINE (DU/O0, 1604 ) Ra 2,0 {40l s X0 RS o2 edl 4 X{200002 ¢X1B1MNL{N)

B2 DUDLHE AP -BEeX{I)*PEeR{21%P2+X{I1*PISNAIOP4+X(5) #PY 1 JUIHL XL LD SR LD n24{HZeXL2IBXZ)IOeZeE KL ) BHB)o#2) 1%, 660866 TED
D2N=8 1= 1. H1

p2=n2N Pla Plep}

PFTUAN Pl B 7{l.eiN{4&) ORI 402)

END e2= La-H2

EUNCTION DINLHL ,H2, M X2, 12} P2z p2eP2

REAL NL17 1/-n 234375 ,= e 640620 4y 3540N35E~14+2 20515624~ ,2441406F~1 P2s P2/ LEa+iXI518P2#42)

1+2.156604,4. 371868, LLT1IRT5,1,3125,. T668457/ Piz 1.H3

DO={0.9 #4031 254H1eHE I#2.333333IE0 100229654 P3x PYaE3

I 4{ 1.2 0TI 25FHIEH I+, 103302 IC0) 422, 29894 Pla P3/. 5.t (XLLIWFAIRY2Y

1 .45 ® [HI*HIjee, 33333IIECIEH2, 2954 00,4150 Ba XLFAZE(DeX(TI®PLONIAIEP24ALT}¥P2)

OU= XI#KLeX20% 2 9%6 UfSNx -, EASETIE-1'E

(FLDUGTalle} DU= [1e=XLEXT/{a,50L) ) ®0U**,33337133E0 05 a0% N

afTuRY
END

|T6T/



TABLE 6. COMPARISON BETWEEN EXACT AND APPROXIMATE SOLUTION OF THE|

EXAKTE WERTE FUEX NN=

ox1 ox2

1000 ¥¥ o0
NAEHERUN GSWERT €«

14250 « 2000
NAEHERUNGSWERT f=

« 8000 1.25¢
NAEHERUNGSMERT E=

2,000 « 2000
MAEHERUNGSHERT &=

» 8000 2:900
NAEHERUNGSWERTE=

1.000 L.000
NAEHFRUNGSWERTE=

1.000 1,000
NAEHMERUNGSWERT E=

t.000 l.000
MAEHERUNGSNERTE=

1.000 1.000
HAEHERUNGSWERT Ea

1,000 1.000
NAEHERUNGSWERTEs

1.000 1000
NAEHERUNGSWERT E=

1000 1,000
NAEHERUNGSWERT =

1.000 1+000
MAEHERUNGESWNERT €=

4,000 - 5000
NAEHERUNGSWERT E=

« 5000 &, 000
MAEHERUNGSWERT E=

4.000 « 5000
NAEHEAUNGSWERT E=

+ 5000 4,500
NAEHERUNGSWERT E=

1.000 1.000
NAEHERUNGSWERTE=

+1326E=04 v 5004
MAEHERUNGSWERT £=

11719 Lad 95
NAEHERUNGSWERT E=

« 5051 + 8858
NAEHERUNGSWERT E=

1.985%
NAEHERUNGSWERT Ew

1.17% te503
HAEHERUNGSWERTE=

1.361 1.52¢
NAEHERUMGSMERT En

4891 12425
NAEHERUNGSWERT E=

Tad22 Le 828
MAEHERUNGSWERT E=

+ 1895 1.458
NAEHERUN GSWERT v

«8316 =1272
HAEHERUNGSWERT E=

Lo%Th 1. TS
NAEHERUNGSWERT £=

s ZAGE la42l
NAEHERUNGSWERT E=

« BA8GE~01

0X1
1. 000

1,000 -~

1, 000

6250

«5250

1.000

1. 000

1. 000

1. 000

1. 000

1. 000

1., 000

1.000

» 35000

= 5000

« 5000

«5000

1. 000

+1309E+0%

58672

2, 2358

G 008

«5314

«481%

1. 435

«3025

W17

9 450

« 3804

Ze TOG

x5!

0

1. 000

+0

Z.000

0

3,000

« SDO0

2,000

ke 00O

&, 000

2+ 000

12000

« 5000

. 7539

«4402E£-01

« 8165E-01

« 53722

- 8029

» TI2BE-01

+ 4391

- P04

1929

» 6303

« 9127

a®ll2

52

0

1

0

1.000

0

2. 000

-0

3. 000

1. 022

la 003}

]

D

4o V30

4+ 000

« 5000

+ 5671

» SSATE~D1

5208

«39T1E-D}

« TO4D}

« 7213

2740

« 994D

»2935T7E-01

s BE&T

= 2352

8112

# Exact values for NN = 50.
#%  Approximate values

o1

529273
«52323D

«587534
« SB35

« 5815658
«5B2437

«502078
«4263))

« 772179
» TH13T2

« 824336
«¥I2TED

1. 16151
la0b212

1.2325)
1.26953

1.62253
1:92334%

1.539738
1e560LT

2.7085%
24208342

1.,27322
1e 20335

1.41218
1.35439

1439534
1+88134

2o 37184
2410323

2.53222
2.52299

2eH9312
2e32211

« 822832
821765

1163.37
1153.12

«b6023)
«552873

«976932
« PT84

153833
1.3281)

104237
1, 2459

2B4933T
»1177)

«3T3138
wAT4AL4

114338
1211657

1.23135
L. 21271

2.16542
2,12827

725352
774152

1l.21i611
1.22247

INTEGRALS | dy.k=1, 2, o0y 5

o2

«550811
» 3530591

« 533899
+ 585463

» 524952
+514%22

+5617508
«512840

= 4295627
o #7552

+ 819854
«824927

laD541%
105472

1.21832
1.20377

1e 81438
la5%448

1.57412
1. 56198

2.09591
2.074891

1.08759
1.94511

1. 39468
121730

1.25482
1.91877

1.8925%
1.88754

2.462638
2:4673%

233817
2251128

810274
e 796553

1160.08
11604 45

«5B5453T2
« 540969

«TH 2450
1.03323

1.58213
T 45953

100474
P14

«B6988T
+8BT346

«T50833
« 751760

1, 12704
1.07605

1.0T453
«983607

216995
2e1284%9

«T6l321
«014433

116180
l.14885

03

2510374
o B10363

« 401811
L LI

L LERY)
+ 619722

« 599134
«502591

«£90003
« 667291

«B5T122
074311

1.05290
1.05389

1a23629
1s 26405

1.40883
1,40383

1.58TN&
l1.58017

2.09238
2. 08412

1.N7857
1.05133

1.40314
1.22711

1.8772%
Lo 28464

199081
1.99329

2 60454
2240293

Z« 51440
2. 82312

+ 511418
« BONSRD

1160.12
116030

« 520180
«b21080

« 9569356 |

+ 953560

1455947
t.5%411

1201253
« 917707

» B4STB6
=891261

« 819140
2 T71416

1.12305
1. 08718

1ls1%612
1:1865)

«A6TEZ
2415344

»B6D252
«857278

1419412
Le1aT59

D

«0
L

-0
0

N
o0

» 0
0

.0
o

20
«0

+0
«0

N
0

o0
%)

0
o0

-+ 156930
- ATLR5BZ-01

=s 217364
-5 214470

0
ahn

«0
s+ 0

-s 387542
-+ 39974

~s 147111
- 170391

-2 137924
-y 9174202 -01

~e BBTONNE =03
~e 2096345 ~01

-4 909008E=01
- 4973 T72E-00

= 354 944E-01
- 6513905 =02

-~ 10101 3E-01
-» 2OVRIOE-02

-p 194115
=2 2006565

-s127162
-2 2TT261E-01

-~ 106793
o W47 H4E-0L

-2 215942
~s 232628

- 34 9292E-01
-5 82EL TIE-03

~o HTLENGE ~N1
-2 35554 0F -N

-3 163858
= 148742

- B82284E-01
-+ H426545-01

/192 ]

+1]

3]
D

o
o0

«0
o0

+0
0

0
«Q

1.
a0

.0
2

oh
.0

~y BS54 TIE=NY
-y BASHTIE=DL

~s 1565808
~a 155007

sl
P

o0
o

= 226153
=~ 226108

-+ 150600
- 150400

-y 642200E=-D1
=~ S8TID1E=DL

= TTBTL9E~02
~s #A3TLIE~ID

-o LOSLTOE~02
~s Z10440E=-22

= 122853E=~01
s 134503E-01

- 22 5980E-02
= 2T 92E=02

- 147807
~a 1156530

~s L4DG15E~2L
~e LTETRRESL

= 48394TE~01
e 463ITAIEDL

129191
- 129708

-s 20651 32€-02
=s L59SRBE-D2

~a #3690 E-D1
= METIOTESDL

—e 455344 -0
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TABLE 7. 'FORTRAN SUBPROGRAMS D11, D12, D13, D14 and FEDI ACCORDING TO CHAPTER A 2.6,

JION _O11(X1,%2,%3)

EXTERNAL DL111,01312
D11l=5DIJ(X1sX24X3,01111,01112)
RETURN
END

NTIO DI2IXL ,X2,X2)
EXTERNAL D1Z711,D1212
012=5D1J(X1,X2,X3,01211,01212)
RE TURN
END
FUNCT UKL X2, %30
EXTERNAL O1311,01312
B13=8DT4 (N, X2,X3, 01311,01312)
RE TURN
END

FUNCTION OL&tXP,X2,%3)
EATERNAL OLl&11,D1412

DUAaSOIJIX14X2eX3,01411,01412)
RETURN
END ’
FUNCTION SDIJIXL.X24%3,/F11/4/F12/1)
IF(ABSL{ le=~HL}+ABS{ Le~H2)+ABS(Lla-H2) JLT.1.E-4} GOTO 2
50,
oo 1
Fols
o3 1 A=[,3
SaS+FRDTIIX]L $X24X34 1404 F11,F12)
Fza2.
5D5)=S
RETURN
SOTJ= A, %DIJIX1 R2aX391e2yFL14F12)00.*DTIIX14%2)X301424F11,4F12)
RETURN
END
FUNCTION OIJ(HLHZ24HM3,1,J,D11,D12})
DIMENSION HB{3),H{ 3}
HH{1} =ML
HHi21 aH2
HH{ 2 =H3
iF(I.EQ.J) GOTO 200 ’
HI1)=HHET} !
HIZ)Y=HH{J)
Hi2)=HH{&-1-J)
Old= DI2(H{LY,H({2),HL 2D}
RETURN
JU=MOD{1,3)+]
Hill=HMiI)
Hi2)=HH!LI}
H{ 31 =HH{&=-1-JJ)
OlJ= DILIHILI,HE2),H(3)]
RETURN
END
FUNCTION DIL111{H1,M2,H43]
NLLLL =4, *(D1{H) yHR24HZ¢+0e+0e 1=01 (H1 sH2s M3 4 H1 404 ) 1/ EH1 #HY)
RETURN
END
FUNCTION D1112Z{H1,H2,H3]
DIL12==2,%[D2{HLyH24HICu p0u 1=D2{HL,H2¢H3 404 yH2}) 2{H22H2 )
1 4 X0 LHL ¢ HZ yH o 5¥HL, o+ 5%HZ )/ IH1*HZ)
RETURN

I= 1+3

— AR g e

END

FUNCTION DL211{H1,H2,H3)

D1211 =8 0 {0LIHL s HZy H3 g o S¥HE 1 0u 1=D1{HE HZeH2p Lo S*HL, Qo1 F FLHL*H1}
AETURN

END

FUNCTION D1212IH]1,H2,H3)

D1212=- {DIHLH2,HI 4y Pe o 0e a2 =D30HL yH2 (HY 40 o 1. 5*H2 D V7 tH2¥H2 )
1 +2.%D5(H1, HZ o H3 4 o S%HL, H2 1/ LH12HZ)

RETURN

END

FUNCTION D1311 (H1,H2,H3)

D131 1=D1111IH]Y H2:H3)

RETURN

END

FUNCTION 01312(H1,H2,.H3)

D1312%=CDLiHI4H2 s H33 00 gDu)=DLIHL,H2,HIp 0y H2HI/IH2HD)
1 —{0L{HZ4Hl yH3, 044 0u}=D1(H2 yH1 sHI s H2 04 } 1/ (HL12H1}
2 46, kDACHL, H2 ) H, o 5*H1 4 4 5*H2) /{H1%H2)

RETURN

END

FUNCTION D1411(H) H2HI}

D1&T1==( 18,901 {HL yH2 M3 4N, ¢ 02 3=1T o901 (H1,H2  HI H140,)
1 420 D1{H1 HZoH3: 2. ¢H1 04 J#DLTHL s H24H3 43, 9H] 0,0} /LB, #H1¥HL
)

RETURN

END
FUNCTION D1412{H1 4HZH3}

D14122=C7, *D1UHL g H2,H3 4 0o Ma I=B, #DLIHI, H24HI 04 4H2)
$0LIHL  HZ e H3 400 g 2.0H2 J4D1(HT o H2eHAsHI 4 24 *H2)
=DLIHLyH2 H3 HT 400 1} /[ Ba¥H22H2)
=17.*DL{H2 4 HL H3 N o300 1-Ba #D1IMZ¢H14H2: 00, H1D

*DLCHZ ) HL g H3 300y 2. ¥HE )+ DL (HZ 4y HY sHI K2 2o PH1)
“OECHZZHL H3, H2, 04 1) /LB #HLAHE)
(15, *¥DA CHL ¢ HZ o HY 3o 5%HL o5 *H21-DAIHT 4 H22 HI s L o 5%H1 1 0 5PH2)
“D4(H1 M2 H3y s 5*HL 3 12 S¥H21-DA(HL s H24H3 510 5*HL ,1.5%H21) :

8 & tHLI*HZ )

RETURN

END

EUNCTION FEDLINL,X2,%3)

EXTERNAL FED11,FEDL2

FEDY = SDIJEXLyX24X34FEDILFEDLZ}

RETURN

END
- FUNCTION FEDI1(H1,H2,H3)

FED11=5QRT (HZ®HI*ENERGZ(HI, HINISD1211(H1+H2,HI)

RETURN

FND

FUNCTION FEDIZ2UHL HZyH3} e

FED1Z2%, 5*{ SQRT{H2Z*HISENERG2{H2,H) 1 #DL1212 (M1 4H24H3)

1 +SORT (HI*HI®ENERGR2EHL H31 I ¥D1212(HZ,HL . HI) )

RE TURN

END




TABLE 8. COEFFICIENTS OF THE VECTORS Al, A2

/194 |
ACCORDING TO (A6-9)
. : - ) | '
Al Type a) (Jump)| Type b) (Euﬂer)iType cj(DuFort Frankel)
(Ivel, Ml 1] W 2 at .l&
-24t -‘.j;‘Ja.,? 'Af(A:"'mr'M = °5"r) ey Ju,,;,-
o J
b stp(art Tt e | FrpetEeag
Jﬂ! r:f:m: ]
21"'( "Y‘"{J"*)) 244
. Vi t atpm 2at [ Vx M
A 'éia';" fzvt (41 l) + axt AeY ( 2ax 1 axt
A1(3) LN 3 2L [vgetal)e A 2at (, W, )
AN oax axt A1) '24.»; Axt
, W At v Af p 24t Vi Ve )
{uﬂ;} —%‘l (V + ?[)+ Ayt Aty { 2ray  rheyt
AL(5} at 4 at 4 )Af( )
- "?A—z& 14;:-((!/'”,“?’% +Lapt At 24-av rrayt
A1(6) at Ve ot (y ffV!)'} ﬁfﬁ.(._‘_..i) 28t [ Vo ML )
Tar Zar VT Tas A EF T e 28 A Yo
7 v t atp £ 4 4N 2at f Vo M A )
gk - _—"""'d:_r.f 1‘:.4‘ (—V‘f‘{WJ)*H;é‘(.;_'T) A+y 24% ‘ I o e 14T

Continued on next page
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TABLE 8 (CONTINUED)

— - 1|
a2 Type a) (Jump)\ Type b) (Euller)] Type c)DuFort-Frankel)
A-F
1~ 4at A SR 2
Az(1) P /‘f :x o ¥= -'!/Mf[‘,:‘ .,4,,?: =
' "’4'(’* Pyl SO ;"r)] ..-X&.‘;‘;"ﬁt]
a2(2) 2atu 0 ' 0
AX"
Az(3) 2atp o 0
axt
A2(4) 28tp 0 0
+lagd
a2(5) 254 '
"_r—,_;% o o
Pl A
20| et ) 0 0
v A :
A2(T) 24{‘/4(}%} 1_4_‘) 0 (o}
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TABLE 9. COEFFICIENTS OF THE AMPLIFICATION MATRIX G
ACCORDING TO (A6-16)

Type a) (Jump)

44
- Vi V.
844 df(dx S, * 'T_Y-A'(S ﬁ'_ 3)

H

o 1 e - ]
841 : 'z/“di['r at

Type b}  (Eufler)

at [(c,-0) (L4, J_) (c, (e 2 ) (e 4)(“4/ _&)

{.AA'J = ax?
~ S ).__
H"f T /"""#“VWJ“‘ J
Ly, Ve
Bd/.' =T S"-ZXL‘ - Sl -quf S3 AT 5 ";f:-—
A= 8,=0
Type c¢) (DuFort-Frankel)
EA"" ('f'f)r) [ T4 r 450"'* €t 411 C - _JV g]
= W «_ Vi
AA (fH-x‘] AX S:f Tr_ft;— 2 ’I"Af )53]
|
- A-r ‘ v * s
iA/!'Z-‘ g ,2/(44'&[ A:I- - ﬂ:“. ?"\“]
8, = o0 | |
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TABLE 10.

ERRORS IN THE DIFFERENCING METHOD FOR LAMINAR INCIDENT FLOW

- 1000 (Wall mesh) €, 1000 (Center)
Fall: a) b) c) a). b) e)
Ar = 1/8 ars= 1/8 AT =1/16 Ar =1/8 Arz1/8 Ar=1/16
= const s const = const = const # const /= const
t
o.ol ~ 2.36 - 2,01 - 0.72 - 0.24 - 0.79 - 0.0b
o.c8 -~ 2.2 - 2,22 - 0.68 - 047 - 0.60 - 0.13.
0.12 - 2.06 - 2,31 - 0.63 ~ 0.48 - 0.93 - 0.12
0.16 - 1.8 - 2,34 - 0.6o - 0.25 - 0.86 - 0.08
0.20 - 1.74 - 2.}4. .= 0.57 - 0,11 -~ 0.92 - 0.0l
0.24 - 1,61 - 2,32 - 0.55 + 0.21 - 0.63 + 0.02
o.do - 1.%0 -~ 2.21 - 0.49 + 0.97 + 0.25 + 0.23
.
'_I
O
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TABLE 11. TEST PROBLEM TAYLOR-GREEN VORTICES

I

Error of the

II

11X
Yactor of error

Time step ~ Error of the :
" ; " enlargement when
method used . method used by o N
—_ 5 — 1 - o5 lncreasing Mesh
here °10 Orszag -1 Tsize by Tour.
1 0.107 2.1 26
> 4,26 6.1 19
5 8.29 10 16
T 12.3 1% 14
9 16.1 17 13
20 37 37 12




FOLLOUT PramE FOLDOUT Fray,

ar
! e

TABLE 12. SPECIFICATION (fF CASES X1 - Kk, z1 - Z4, /198
K1 K2 K3 K4 71 Z2 z3 Al
R2/R1 1 1 1 1 5 5 5 - 5
axX, X 0.125 0.125 0.0625 0.0625 0.25 0.25 0.125 0.125
| AKX, AY 0.125 0.125 0.0625 0.0625 T /16 T/16 /52 W}g
axy, At | 0.0625 0.0625 0.0625 g:gfg* 0.0625 0.0625 0.0625 ook
X5 X 2 4 4 4 2 4 4 4
X, ¢ 1 2 2 2 T 27 o7 27
! ™ 16 32 64 64 8 16 32 2
IM 8 16 32 32 16 32 64 o4
KM 16 16 16 0 16 16 16 32
M. JM KM 2048 8192 32768 65536 2048 8192 32768 65536
o 6k G4 32 32 64 64 - 32
at+10” 3.13 2.81 1.46 1.13 4 .60 .88 1,43 1.04
Problem| 5.6 3.8 0.9 1.1 7.4 12.3 1.4 1.8
time! :
Time steps| 1440 1408 736 016 1664 3200 1088 1488
ygxﬁ?&ﬁation] 35" Zh30' 6h 9h 40" 5h30" Thio" 14n
[timel_ . '
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TABLE 13. CONSTANT CASE PARAMETERS
s;ﬁbol Def. Eg. Value
: |
:WJ " Re (1 - 13) 10000
| Re, (1 - 14) 300000
Remkrit (5 - 90) 2100
o 4 - %) 1.5
Cq (5 ~ 65) 0.3
0 (5 « 87) 0.01
e (7 ~ 15) 0.2 ]
E) 2 (7 -8) 88000
M1 (5-88) ]
T, /0, 7 -9) mete 3
“ (5 - 38 s &)
% (5 - 55) 1.1
p* (5 - 16) #°

241
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TABLE 14,

CALCULATION TIMES PER TIME STEP
ON THE IBM 370/165

Centril - © K1 K2 K3 K4
butions zl z2 z3 zh
sec sec % sec % sec et
Energy | 1.9 21 8.5 3 | 17.6  33.6
U 3.7 60 { 14.1 56.5| 2.8 57
y 0.5 9 2.33 9.5| 4.9 9.4
Total 1.5 100 6.1 100 | 24.9 100 52,3 100
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TABLE 15. COMPARISON OF MAXIMUM VELOCITIES
< MOmax R2/R1 16°. Re Reference

31.8 1 1 Clark [22]
31.5 1 k.6 Comte-Bellot [18]
7.7 1 2.4 "

o7 1 1 Laufer [76]
30.1 i o0 Deardorff [29]
28.89 1 ) K1

31.3 1 ) K2

27.4 1 > K2

27.6 1 3 K4

28.0 5 3 Z1

28.3 5 3 22

27.6 .5 3 23

27.9 5 3 z4

243
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TABLE 16. COMPARISON OF THE DIFFERENCES BETWEEN /202
THE MAXIMUM AND MINIMUM VELOCITY

<MA>MQ;‘U<.‘£¢> R2/R1 Rem-155 ‘Referencef
a.22 1 1 Clark  [22]
2.70 1 3 Barthels [11]
2.68 5 3 1
> 1 o0 Deardorff [29)
3.19 1 3 X1
3.17 1 3 K2
2-60 1 3 KB
2.75 5 3 ‘ 71
3.15 5 3 7

24y



Plate flow
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Annulus flow
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Figure 1. Channel geometries consldered
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Kolmogorov—LengEh/D{
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- ]0-5 —— e e
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Figure 2. Estimation of required resolution
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/205 |

T
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/
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Figure 3. Required storage capacity as a function of meshes
in one dlrection
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2/3-5/3
N <E> k

~Turbulence 7
9%&2%. Reg;pn_determined' k-7 Reglicn determined

4 Ffrrfing energgilL‘ by inertia: force l I by viscoslty forces
I - - T
i

Kmax Lo K€ t

i [1/length]

‘r,q,Region resolved by mesh grid -]

Figure 6. Principle varlation of the energy spectrum of isotropic turbulence at
large Reynolds numbers
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Aﬁ\ COMPARISON OF W° AND v SPECTRA
N ~N Laufer (1950 )
[‘\ . Requ = 61600
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Figure 7. Estimation of required mesh numb

: KM for allowi
the local isot . . er wing
Laufer [77] rople assumption, according to measurements of
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Figure 12. Allowable time interval At as a function of viscosity p where convection velocity V is
the parameter, for Type a) difference formulas

256



FOLDOUT FRAMY

-

8'535-03:

*At

7-47E-03 4

. B-40E-03

[ ]

G-33E-03+
| 4-27E-03+
3-20E-03
< o 10
e-138-03 + ™ c ' . c
. & s ey = 30 v - -
_hﬂ;-—-"ﬂ;__“"““‘;:;:::::S:::::;zn-q;__-=;t==::r.--" - T e———
50 ~ . : -
-03 - ) = = =) - —————
1'07E 03 = s =
Vi

L 1 [ 1 1

1 1 i

F I

I Ll % Ll 1 i |
3.206-0¢ 6-40E-O¢ 9-60E-CR2 1-28E-01 1-80E-01 1-32E-01 2-PAE-01 ©-SeE-01 2-88E-01 3-

!

T 1 T
2OE-01 3-526-01 3-84E-01

Figure 13. Allowable time interval At as & function of viscoslty u where convection velocity

Vx is the parameter,

for Type b) (other pdrameters as 1in Figure 12)
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Figure 14. Allowable time interval At as a functidn of viscosity u where convection veloeity V

is the pagameter, for Type c¢) (DuFort-Frankel) and small viscosities (other parameters as in %
Figure 12
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Figure 15. Allowable time interval At as a function of viscosity
u for Type c¢) difference formulas (DuFort-Frankel) and large |
viscosities (other parameters as in | Figure 12»
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